|   | 
Details
   web
Records
Author Gunkel, A. Külls, C.
Title Towards agent-based modelling of stakeholder behaviour – a pilot study on drought vulnerability of decentral water supply in NE Brazil Type Journal Article
Year 2006 Publication International Congress on Environmental Modelling and Sofware Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract 3rd International Congress on Environmental Modelling and Sofware – Burlington, Vermont
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Serial 74
Permanent link to this record
 

 
Author Külls, C.
Title Demonstration des Potentials der Nitrat-Isotopenanalytik für die Strategieentwicklung der Sanierung Nitrat-belasteter Brunnen Type Report
Year 2004 Publication Umweltbundesamt Abbreviated Journal
Volume Issue Pages
Keywords (up)
Abstract Demonstration des Potentials der Nitrat-Isotopenanalytik für die Strategieentwicklung der Sanierung Nitrat-belasteter Brunnen
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Serial 75
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C.
Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
Year 2022 Publication Water Abbreviated Journal
Volume 14 Issue 5 Pages
Keywords (up)
Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Marinos2022 Serial 82
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C.
Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
Year 2022 Publication Water Abbreviated Journal
Volume 14 Issue 5 Pages
Keywords (up)
Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ w14050734 Serial 81
Permanent link to this record
 

 
Author Aldawsari, S.; Kampmann, R.; Harnisch, J.; Rohde, C.
Title Setting Time, Microstructure, and Durability Properties of Low Calcium Fly Ash/Slag Geopolymer: A Review Type Journal Article
Year 2022 Publication Materials Abbreviated Journal
Volume 15 Issue 3 Pages
Keywords (up)
Abstract Ordinary Portland cement (OPC) is known for its significant contribution to carbon dioxide emissions. Geopolymer has a lower footprint in terms of CO2 emissions and has been considered as an alternative for OPC. A well-developed understanding of the use of fly-ash-based and slag-based geopolymers as separate systems has been reached in the literature, specifically regarding their mechanical properties. However, the microstructural and durability of the combined system after slag addition introduces more interactive gels and complex microstructural formations. The microstructural changes of complex blended systems contribute to significant advances in the durability of fly ash/slag geopolymers. In the present review, the setting time, microstructural properties (gel phase development, permeability properties, shrinkage behavior), and durability (chloride resistance, sulfate attack, and carbonatation), as discussed literature, are studied and summarized to simplify and draw conclusions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ma15030876 Serial 84
Permanent link to this record