toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rosen, M.R.; Burow, K.R.; Fram, M.S. url  openurl
  Title Anthropogenic and geologic causes of anomalously high uranium concentrations in groundwater used for drinking water supply in the southeastern San Joaquin Valley, CA Type Journal Article
  Year 2019 Publication Journal of Hydrology Abbreviated Journal  
  Volume 577 Issue Pages 124009  
  Keywords (up) California, Central Valley, Geochemistry, Groundwater San Joaquin Valley, Uranium  
  Abstract Concentrations of uranium (U) \textgreater30 µg/L in groundwater are relatively uncommon in drinking water in the United States but can be of concern in those areas where complex interactions of aquifer materials and anthropogenic alterations of the natural flow regime mobilize U. High concentrations (\textgreater30 µg/L) of U in the southeastern San Joaquin Valley, California, USA, have been detected in 24 percent of 257 domestic, irrigation, and public-supply wells sampled across an approximately 110,000 km2 area. In this study we evaluated mechanisms for mobilization of U in the San Joaquin Valley proposed in previous studies, confirming mobilization by HCO3 and refuting mobilization by NO3 and we refined our understanding of the geologic sources of U to the scale of individual alluvial fans. The location of high concentrations depends on the interactions of geological U sources from fluvial fans that originate in the Sierra Nevada to the east and seepage of irrigation water that contains high concentrations of HCO3 that leaches U from the sediments. In addition, interactions with PO4 from fertilized irrigated fields may sequester U in the aquifer. Principal component analysis of the data demonstrates that HCO3 and ions associated with high total dissolved solids in the aquifer and the percentage of agriculture near the well sampled are associated with high U concentrations. Nitrate concentrations do not appear to control release of U to the aquifer. Age dating of the groundwater and generally increasing U concentrations of the past 25 years in resampled wells where irrigation is prevalent suggests that high U concentrations are associated with younger water, indicating that irrigation of fields over the past 100 years has significantly contributed to increasing concentrations and mobilizing U. In some places, the groundwater is supersaturated with uranyl-containing minerals, as would be expected in roll front deposits. In general, the interaction of natural geological sources high in U, the anthropogenically driven addition of HCO3 and possibly phosphate fertilizer, control the location and concentration of U in each individual fluvial fan, but the addition of nitrate in fertilizer does not appear control the location of high U. These geochemical interactions are complex but can be used to determine controls on anomalously high U in alluvial aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ rosen_anthropogenic_2019 Serial 158  
Permanent link to this record
 

 
Author Qiu, W.; Yang, Y.; Song, J.; Que, W.; Liu, Z.; Weng, H.; Wu, J.; Wu, J. url  openurl
  Title What chemical reaction dominates the CO2 and O2 in-situ uranium leaching?: Insights from a three-dimensional multicomponent reactive transport model at the field scale Type Journal Article
  Year 2023 Publication Applied Geochemistry Abbreviated Journal  
  Volume 148 Issue Pages 105522  
  Keywords (up) Carbonate minerals, In-situ leaching (ISL) of uranium, Pyrite oxidation, Reactive transport modeling (RTM)  
  Abstract The complex behavior of uranium in recovery is mostly driven by water-rock interactions following lixiviant injection into ore-bearing aquifers. Significant challenges exist in exploring the geochemical processes responsible for uranium release and mobilization. Herein this study provides an illustration of a ten-year field scale CO2 and O2 in-situ leaching (ISL) process at a typical sandstone-hosted uranium deposit in northern China. We also conducte a three-dimensional (3-D) multicomponent reactive transport model to assess the effects of potential chemical reactions on uranium recovery, in particular, to focus on the role of sulfide mineral pyrite (FeS2). Numerical simulations are performed considering three potential ISL reaction pathways to determine the relative contributions to uranium release, and the results indicate that bicarbonate promotes the oxidative dissolution of uranium-bearing minerals and further accelerates the uranium leaching in a neutral geochemical system. Moreover, the presence of FeS2 exerts a strong competitive role in the uranium-bearing mineral dissolution by increasing oxygen consumption, favoring the formation of iron oxyhydroxide, and therefore causing an associated decrease in uranium recovery rates. The simulation model demonstrates that dissolution of carbonate neutralizes acidic water generated from pyrite oxidation and aqueous CO2 dissociation. In addition, the cation concentrations (i.e., Ca and Mg) are increasing in the pregnant solutions, showing that the recycling of lixiviants and kinetic dissolution of carbonate generates a larger number of dissolved Ca and Mg and inevitably triggers the secondary dolomite mineral precipitation. The findings improve our fundamental understanding of the geochemical processes in a long-term uranium ISL system and provide important environmental implications for the optimal design of uranium recovery, remediation, and risk exposure assessment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ qiu_what_2023 Serial 207  
Permanent link to this record
 

 
Author Saini, K.; Singh, P.; Bajwa, B.S. url  openurl
  Title Comparative statistical analysis of carcinogenic and non-carcinogenic effects of uranium in groundwater samples from different regions of Punjab, India Type Journal Article
  Year 2016 Publication Applied Radiation and Isotopes Abbreviated Journal  
  Volume 118 Issue Pages 196-202  
  Keywords (up) Carcinogenic, Groundwater, LED fluorimeter, Uranium  
  Abstract LED flourimeter has been used for microanalysis of uranium concentration in groundwater samples collected from six districts of South West (SW), West (W) and North East (NE) Punjab, India. Average value of uranium content in water samples of SW Punjab is observed to be higher than WHO, USEPA recommended safe limit of 30µgl−1 as well as AERB proposed limit of 60µgl−1. Whereas, for W and NE region of Punjab, average level of uranium concentration was within AERB recommended limit of 60µgl−1. Average value observed in SW Punjab is around 3–4 times the value observed in W Punjab, whereas its value is more than 17 times the average value observed in NE region of Punjab. Statistical analysis of carcinogenic as well as non carcinogenic risks due to uranium have been evaluated for each studied district.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ saini_comparative_2016 Serial 130  
Permanent link to this record
 

 
Author Uddin, M.G.; Diganta, M.T.M.; Sajib, A.M.; Hasan, M.A.; Moniruzzaman, M.; Rahman, A.; Olbert, A.I. url  openurl
  Title Assessment of hydrogeochemistry in groundwater using water quality index model and indices approaches Type Journal Article
  Year 2023 Publication Heliyon Abbreviated Journal  
  Volume 9 Issue 9 Pages 19668  
  Keywords (up) CCME index, Groundwater quality, Hydrogeochemistry, Irrigation indices, Nuclear power plant, Water quality index  
  Abstract Groundwater resources around the world required periodic monitoring in order to ensure the safe and sustainable utilization for humans by keeping the good status of water quality. However, this could be a daunting task for developing countries due to the insufficient data in spatiotemporal resolution. Therefore, this research work aimed to assess groundwater quality in terms of drinking and irrigation purposes at the adjacent part of the Rooppur Nuclear Power Plant (RNPP) in Bangladesh. For the purposes of achieving the aim of this study, nine groundwater samples were collected seasonally (dry and wet season) and seventeen hydro-geochemical indicators were analyzed, including Temperature (Temp.), pH, electrical conductivity (EC), total dissolved solids (TDS), total alkalinity (TA), total hardness (TH), total organic carbon (TOC), bicarbonate (HCO3−), chloride (Cl−), phosphate (PO43−), sulfate (SO42−), nitrite (NO2−), nitrate (NO3−), sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+). The present study utilized the Canadian Council of Ministers of the Environment water quality index (CCME-WQI) model to assess water quality for drinking purposes. In addition, nine indices including EC, TDS, TH, sodium adsorption ratio (SAR), percent sodium (Na%), permeability index (PI), Kelley’s ratio (KR), magnesium hazard ratio (MHR), soluble sodium percentage (SSP), and Residual sodium carbonate (RSC) were used in this research for assessing the water quality for irrigation purposes. The computed mean CCME-WQI score found higher during the dry season (ranges 48 to 74) than the wet season (ranges 40 to 65). Moreover, CCME-WQI model ranked groundwater quality between the “poor” and “marginal” categories during the wet season implying unsuitable water for human consumption. Like CCME-WQI model, majority of the irrigation index also demonstrated suitable water for crop cultivation during dry season. The findings of this research indicate that it requires additional care to improve the monitoring programme for protecting groundwater quality in the RNPP area. Insightful information from this study might be useful as baseline for national strategic planners in order to protect groundwater resources during the any emergencies associated with RNPP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8440 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ uddin_assessment_2023 Serial 167  
Permanent link to this record
 

 
Author Zhao, Y.; Li, X.; Lei, L.; Chen, L.; Luo, Z. url  openurl
  Title Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration Type Journal Article
  Year 2023 Publication Journal of Rock Mechanics and Geotechnical Engineering Abbreviated Journal  
  Volume 15 Issue 10 Pages 2597-2610  
  Keywords (up) Chemical reactive rate, Low-frequency vibration, Low-permeability sandstone, Optimum permeability, Permeability evolution mechanism, Uranium migration  
  Abstract Low-frequency vibrations can effectively improve natural sandstone permeability, and higher vibration frequency is associated with larger permeability. However, the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined. To solve the above problems, in this study, identical homogeneous sandstone samples were selected to simulate low-permeability sandstone; a permeability evolution model considering the combined action of vibration stress, pore water pressure, water flow impact force, and chemical erosion was established; and vibration leaching experiments were performed to test the model accuracy. Both the permeability and chemical reactions were found to simultaneously restrict U6+ leaching, and the vibration treatment increased the permeability, causing the U6+ leaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate. Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion, to prove the correctness of the mechanism according to the experimental results, and to develop a new method for determining the optimum permeability in uranium leaching. The uranium leaching was found to primarily follow a process consisting of (1) a permeability control stage, (2) achieving the optimum permeability, (3) a chemical reactive rate control stage, and (4) a channel flow stage. The resolution of these problems is of great significance for facilitating the application and promotion of low-frequency vibration in the CO2 + O2 leaching process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-7755 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zhao_permeability_2023 Serial 198  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: