toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xie, T.; Lian, B.; Chen, C.; Qian, T.; Liu, X.; Shang, Z.; Li, T.; Wang, R.; Wang, Z.; Zhang, A.; Zhu, J. url  openurl
  Title Leaching behaviour and mechanism of U, 226Ra and 210Pb from uranium tailings at different pH conditions Type Journal Article
  Year 2023 Publication Journal of Environmental Radioactivity Abbreviated Journal  
  Volume 270 Issue Pages 107300  
  Keywords Leaching experiments, Pb, Ra, U, Uranium tailings  
  Abstract A large number of radionuclides remain in uranium tailings, and U, 226Ra and 210Pb leach out with water chemistry, causing potential radioactive contamination to the surrounding environment. In this paper, uranium tailings from a uranium tailings pond in southern China were collected at different depths by means of borehole sampling, mixed and homogenised, and analysed for mineral and chemical composition, microscopic morphology, U, 226Ra and 210Pb fugacity, static leaching and dynamic leaching of U, 226Ra and 210Pb in uranium tailings at different pH conditions. The variation of U, 226Ra and 210Pb concentrations in the leachate under different pH conditions with time was obtained, and the leaching mechanism was analysed. The results showed that the uranium tailings were dominated by quartz, plagioclase and other minerals, of which SiO2 and Al2O3 accounted for 65.45% and 13.32% respectively, and U, 226Ra and 210Pb were mainly present in the residue form. The results of the static leaching experiments show that pH mainly influences the leaching of U, 226Ra and 210Pb by changing their chemical forms and the particle properties of the tailings, and that the lower the pH the more favourable the leaching. The results of dynamic leaching experiments during the experimental cycle showed that the leaching concentration and cumulative release of U, 226Ra and 210Pb in the leach solution were greater at lower pH conditions than at higher pH conditions, and the leaching of U, 226Ra and 210Pb at different pH conditions was mainly from the water-soluble and exchangeable states. The present research results are of great significance for the environmental risk management and control of radioactive contamination in existing uranium tailings ponds, and are conducive to ensuring the long-term safety, stability and sustainability of uranium mining sites.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ xie_leaching_2023 Serial 200  
Permanent link to this record
 

 
Author Tan, K.; Li, C.; Liu, J.; Qu, H.; Xia, L.; Hu, Y.; Li, Y. url  openurl
  Title A novel method using a complex surfactant for in-situ leaching of low permeable sandstone uranium deposits Type Journal Article
  Year 2014 Publication Hydrometallurgy Abbreviated Journal  
  Volume 150 Issue Pages 99-106  
  Keywords Complex surfactant, In-situ leaching of uranium mining, Leaching kinetics, Low permeable sandstone uranium deposit, Resin adsorption and elution  
  Abstract Applications of a complex surfactant developed in-house to in-situ leaching of low permeable sandstone uranium deposits are described based on results from agitation leaching, column leaching, resin adsorption, and elution experiments using uranium containing solution from the in-situ leaching site. The results of agitation leaching experiments show that adding surfactant with different concentrations into leaching solution improves the leaching rate of uranium. The maximum leaching rate of uranium from agitation leaching reached 92.6% at an added surfactant concentration of 10mg/l. Result of column leaching experiment shows that adding surfactant with varying concentrations into leaching solutions increased the permeability coefficient of ore-bearing layer by 42.7–86.8%. The leaching rate of uranium from column leaching increased by 58.0% and reached 85.8%. The result of kinetic analysis shows that for the extraction of uranium controlled by diffusion without surfactant the apparent rate constant 0.0023/d changed to 0.0077/d for the extraction with surfactant controlled by both diffusion and surface chemical reactions. Results from resin adsorption and elution experiments show that there was no influence on resin adsorption and elution of uranium with an addition of 50mg/l surfactant to production solution from in-situ leaching. The adsorption curve, sorption capacity of resin, recycling of resin remained the same as without adding any surfactant. Introducing complex surfactant to leaching solution increased the peak concentration of uranium in eluents, reduced the residual uranium content in resin, and promoted the elution efficiency. The method of using a complex surfactant for in-situ leaching is useful for low permeable sandstone uranium deposits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ tan_novel_2014 Serial 201  
Permanent link to this record
 

 
Author Hu, K.; Wang, Q.; Tao, G.; Wang, A.; Ding, D. url  openurl
  Title Experimental Study on Restoration of Polluted Groundwater from in Situ Leaching Uranium Mining with Sulfate Reducing Bacteria and ZVI-SRB Type Journal Article
  Year 2011 Publication Procedia Earth and Planetary Science Abbreviated Journal  
  Volume 2 Issue Pages 150-155  
  Keywords In situ leaching of uranium, nitrate radical, sulfate radical, Sulfate-Reducing Bacteria (SRB), Zero Valent Iron (ZVI)  
  Abstract In the case of in situ leaching of uranium, the primitive geochemical environment for groundwater is changed since leachant is injected into the water beaving uranium deposit. This increases the concentration of uranium and results in the groundwater contamination.Microbial reduction technology by Sulfate reducing bacteria and Zero Valent Iron were employed to treat uranium wastewater. The experiments were conducted to evaluate the influence of anion (sulfate and nitrate) on dealing with uranium wastewater. Experimental results show that the utilization of both SRB system and ZVI – SRB system to process uranium wastewater is affected by sulfate ion and nitrate ion. As the concentration of sulfate radical is lower than 4000mg/L, sulfate-reducing bacteria has no influence on precipitated uranium. However, as the concentration of sulfate is more than 6,000mg/L, uranium removal rate decreases significantly, from 80% to 14.1%. When adding sulfate radical on ZVI – SRB system to process uranium wastewater, its uranium removal rate is higher than SRB system. Low concentration of nitrate contributes to reduction metabolism of SRB. High concentration of nitrate inhibits the growth and metabolism of SRB and affects the treatment efficiency of uranium wastewater. When the concentration of nitrate reaches 1500mg/L, uranium removal rate is less than 0.1%. Nevertheless, as the concentration of nitrate is lower than 1000mg/L, uranium removal rate could reach more than 75%. As existence of nitrate radical, uranium removal rate of SRB by adding ZVI is higher than that without adding.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1878-5220 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hu_experimental_2011 Serial 202  
Permanent link to this record
 

 
Author Shayakhmetov, N.M.; Alibayeva, K.A.; Kaltayev, A.; Panfilov, I. url  openurl
  Title Enhancing uranium in-situ leaching efficiency through the well reverse technique: A study of the effects of reversal time on production efficiency and cost Type Journal Article
  Year 2023 Publication Hydrometallurgy Abbreviated Journal  
  Volume 219 Issue Pages 106086  
  Keywords Economic evaluation, Hydrodynamic enhancement of mineral production, In-situ leaching, Mineral recovery, Optimal reversal time, Well reversing technique  
  Abstract In this study, the application of the Well Reversal Technique (WRT) and the impact of reversal time on the efficiency of uranium mining via In-Situ Leaching (ISL) were investigated. A prevalent issue in ISL mineral extraction is the formation of stagnant zones caused by limited access of the lixiviant, which leads to increased operating expenditures. The WRT, which involves altering the function of some wells from injection to production or vice versa, is a potential solution to this problem. The efficiency of WRT is heavily dependent on the well pattern and reversal time. Two commonly used well patterns in ISL are the 9-spot (row arrangement) and 7-spot (hexagonal arrangement). The objective of this study was to determine the optimal reversal time for a 9-spot well pattern through mathematical modeling of hydrodynamic and physico-chemical processes and subsequent economic assessment. A mathematical model of uranium extraction processes was developed using the principles of mass conservation, Darcy’s, and mass action laws. The results obtained for a 9-spot well pattern without reversal, with two reversal options, and a 7-spot scheme were analyzed comparatively. The 7-spot scheme without reversal was found to be the most effective of the options examined. The application of WRT on a 9-spot well pattern allows to enhance production efficiency to a level comparable to that of a 7-spot well pattern. Additionally, the effect of reversal time on recovery was studied based on two well reversal options. The results from calculation revealed that the optimal scenario was when the well reversal is conducted immediately after the time point at which the average concentration of the pregnant solution in the production wells reaches its peak value. The overall efficiency of WRT application was determined through economic calculations of capital (CAPEX) and operating (OPEX) expenditures. Based on economic calculations, it was determined that the utilization of WRT results in a 3–18% increase in mineral production efficiency for a 9-point scheme, depending on the chosen reversal method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ shayakhmetov_enhancing_2023 Serial 203  
Permanent link to this record
 

 
Author Pastukhov, A.M.; Rychkov, V.N.; Smirnov, A.L.; Skripchenko, S.Y.; Poponin, N.A. url  openurl
  Title Purification of in situ leaching solution for uranium mining by removing solids from suspension Type Journal Article
  Year 2014 Publication Minerals Engineering Abbreviated Journal  
  Volume 55 Issue Pages 1-4  
  Keywords Bag filter, Firm particles, In situ leaching mining, Injection wells, Intake capacity, Purification  
  Abstract This study investigated the process of in situ leaching (ISL) method of uranium mining, and the removal of solid particles from the leaching solution. Investigations were carried out for 4months. The content of firm suspensions in the productive solutions arriving from the well field was up to standard of 3–5mg/l. After keeping in a settler of productive solutions within one hour concentration of suspensions decreases to 2–2.5mg/l. To increase the life of the wells requires more fine purification of the ISL solutions. The best results can be obtained but using filtration. Bag filters were used in experiments carried out at the extraction site. All samples of polypropylene bag filter was produced by the Tamfelt Corporation. The best results were obtained for fabrics S-51M03-L2K4 (pore size 3μm). After three month of trials following indicators of wells work were fixed: on the trial cell decrease in intake capacity did not occur; on the other cells of well field injectability of holes for the same period of time decreased for 15–40%. The results illustrated the high efficiency of this method, which allows injection wells to reach a constant intake capacity, making it possible for technological cells to achieve a constant productivity and balance. Purification of solutions allows to reduce acidulation term of new technological cells from 3–4 to 1.5–2months.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0892-6875 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ pastukhov_purification_2014 Serial 204  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: