toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Marteleto, T. de P.; Abreu, A.E.S. de; Barbosa, M.B.; Yoshinaga-Pereira, S.; Bertolo, R.A.; Enzweiler, J. url  openurl
  Title Groundwater apparent ages and isotopic composition in Crystalline, Diabase and Tubarão aquifers contact area in Campinas, Southeastern Brazil Type Journal Article
  Year 2024 Publication Journal of South American Earth Sciences Abbreviated Journal  
  Volume 135 Issue Pages 104783  
  Keywords Fractured aquifer, Groundwater mixing, Isotopes, Water management  
  Abstract This study refines the hydrogeological conceptual model of an area with three interconnected aquifers, namely the Crystalline Aquifer System (CAS – igneous and metamorphic rocks), which is in contact with the Tubarão Aquifer System (TAS – sedimentary rocks) and the Diabase Aquifer System (DAS – diabase rocks). The detailed investigation involved geophysical logging and hydraulic and hydrodynamic characterization with straddle packers in a local tubular well, in which groundwater presents high uranium concentrations. Hydrogeochemical and isotope (δ2H, δ18O, 3H, δ13C, 14C) analysis in this well and in other three neighboring wells, with lower U concentrations, showed that ancient and modern waters (3H from <0.8 to 1.12 TU, 14C from 69.43 to 78.72 pMC) mix within the aquifer. During groundwater pumping, vertical fractures in the diabase aquifer possibly induce water mixing and recharge of the deeper levels of the aquifers from shallow layers. The high [U] are related to ancient waters from a confined aquifer hosted in CAS that reaches the wells through hydraulically active fractures located deeper than 159 m depth. Groundwater apparent ages do not increase systematically with depth, revealing a complex circulation model for CAS. The results obtained from the other wells, which are all located on drainage lineaments, reveal that one extracts modern water from DAS and TAS, another one extracts modern and ancient water from DAS and CAS, and the third extracts only ancient water from CAS, confirming the complexity of the local hydrogeology. Regarding regional groundwater management, the study revealed the need to characterize the sources of groundwater in each well, in order to protect modern waters from anthropogenic contamination and to protect ancient groundwater from overexploitation, as CAS hosts groundwaters recharged thousands of years ago or more.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0895-9811 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Depaulamarteleto2024104783 Serial 221  
Permanent link to this record
 

 
Author Rusli, S.R.; Weerts, A.H.; Mustafa, S.M.T.; Irawan, D.E.; Taufiq, A.; Bense, V.F. url  openurl
  Title Quantifying aquifer interaction using numerical groundwater flow model evaluated by environmental water tracer data: Application to the data-scarce area of the Bandung groundwater basin, West Java, Indonesia Type Journal Article
  Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 50 Issue Pages 101585  
  Keywords Aquifer interaction, Multi-layer groundwater abstraction, Environmental water tracers, Groundwater flow model, Bandung groundwater basin  
  Abstract Study Region: Bandung groundwater basin, Indonesia. Study focus: Groundwater abstraction of various magnitudes, pumped out from numerous depths in a multitude of layers of aquifers, stimulates different changes in hydraulic head distribution, including ones under vertical cross-sections. This generates groundwater flow in the vertical direction, where groundwater flows within its storage from the shallow to the underlying confined aquifers. In the Bandung groundwater basin, previous studies have identified such processes, but quantitative evaluations have never been conducted, with data scarcity mainly standing as one of the major challenges. In this study, we utilize the collated (1) environmental water tracer data, including major ion elements (Na+/K+, Ca2+, Mg2+, Cl−, SO42−,HCO3−), stable isotope data (2H and δ18O), and groundwater age determination (14C), in conjunction with (2) groundwater flow modeling to quantify the aquifer interaction, driven mainly by the multi-layer groundwater abstraction in the Bandung groundwater basin, and demonstrate their correspondence. In addition, we also use the model to quantify the impact of multi-layer groundwater abstraction on the spatial distribution of the groundwater level changes. New hydrological insights for the region: In response to the limited calibration data availability, we expand the typical model calibration that makes use of the groundwater level observations, with in-situ measurement and a novel qualitative approach using the collated environmental water tracers (EWT) data for the model evaluation. The analysis in the study area using EWT data and quantitative methods of numerical groundwater flow modeling is found to collaborate with each other. Both methods show agreement in their assessment of (1) the groundwater recharge spatial distribution, (2) the regional groundwater flow direction, (3) the groundwater age estimates, and (4) the identification of aquifer interaction. On average, the downwelling to the deeper aquifer is quantified at 0.110 m/year, which stands out as a significant component compared to other groundwater fluxes in the system. We also determine the unconfined aquifer storage volume decrease, calculated from the change in the groundwater table, resulting in an average declining rate of 51 Mm3/year. This number shows that the upper aquifer storage is dwindling at a rate disproportionate to its groundwater abstraction, hugely influenced by losses to the deeper aquifer. The outflow to the deeper aquifer contributes to 60.3% of the total groundwater storage lost, despite representing only 32.3% of the total groundwater abstraction. This study shows the possibility of quantification of aquifer interaction and groundwater level change dynamics driven by multi-layer groundwater abstraction in a multi-layer hydrogeological setting, even in a data-scarce environment. Applying such methods can assist in deriving basin-scale groundwater policies and management strategies under the changing anthropogenic and climatic factors, thereby ensuring sustainable groundwater management.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Rusli2023101585 Serial 222  
Permanent link to this record
 

 
Author Bresinsky, L.; Kordilla, J.; Hector, T.; Engelhardt, I.; Livshitz, Y.; Sauter, M. url  openurl
  Title Managing climate change impacts on the Western Mountain Aquifer: Implications for Mediterranean karst groundwater resources Type Journal Article
  Year 2023 Publication Journal of Hydrology X Abbreviated Journal  
  Volume 20 Issue Pages 100153  
  Keywords Groundwater recharge, Storage, Hydrogeological droughts, Climate change effects, Groundwater management, Mitigation of climate change effects  
  Abstract Many studies highlight the decrease in precipitation due to climate change in the Mediterranean region, making it a prominent hotspot. This study examines the combined impacts of climate change and three groundwater demand scenarios on the water resources of the Western Mountain Aquifer (WMA) in Israel and the West Bank. While commonly used methods for quantifying groundwater recharge and water resources rely on regression models, it is important to acknowledge their limitations when assessing climate change impacts. Regression models and other data-driven approaches are effective within observed variability but may lack predictive power when extrapolated to conditions beyond historical fluctuations. A comprehensive assessment requires distributed process-based numerical models incorporating a broader range of relevant physical flow processes and, ideally, ensemble model projections. In this study, we simulate the dynamics of dual-domain infiltration and precipitation partitioning using a HydroGeoSphere (HGS) model for variably saturated water flow coupled to a soil-epikarst water balance model in the WMA. The model input includes downscaled high-resolution climate projections until 2070 based on the IPCC RCP4.5 scenario. The results reveal a 5% to 10% decrease in long-term average groundwater recharge compared to a 30% reduction in average precipitation. The heterogeneity of karstic flow and increased intensity of individual rainfall events contribute to this mitigated impact on groundwater recharge, underscoring the importance of spatiotemporally resolved climate models with daily precipitation data. However, despite the moderate decrease in recharge, the study highlights the increasing length and severity of consecutive drought years with low recharge values. It emphasizes the need to adjust current management practices to climate change, as freshwater demand is expected to rise during these periods. Additionally, the study examines the emergence of hydrogeological droughts and their propagation from the surface to the groundwater. The results suggest that the 48-month standardized precipitation index (SPI-48) is a suitable indicator for hydrogeological drought emergence due to reduced groundwater recharge.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2589-9155 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Bresinsky2023100153 Serial 223  
Permanent link to this record
 

 
Author Arya, S.; Kumar, A. url  openurl
  Title Evaluation of stormwater management approaches and challenges in urban flood control Type Journal Article
  Year 2023 Publication Urban Climate Abbreviated Journal  
  Volume 51 Issue Pages 101643  
  Keywords Flood risk, Green infrastructure (GI), Stormwater management, Stormwater modelling, Vulnerability assessment, Urban floods  
  Abstract Across the globe, the damage caused by urban floods has increased manifold. The unchecked development has encroached the natural drainage, and the conventional drainage systems are inadequate in handling the augmented hydrological response. To counter this, a variety of approaches with the ability to adjust within the constraints of complex environments by managing surface runoff are being widely investigated and applied worldwide. These can put the flood water to better use, and the ecological balance may get restored. This review discusses recent progress made in the area of Green Infrastructure (GI), modelling tools that help in stormwater management, vulnerability analysis and flood risk assessment. Different ways of handling the problem are summarized through an extensive literature survey. The gaps and barriers that impede the implementation of stormwater management solutions and strategies for further improvement have also been presented. A case study of Gurugram city, India depicting the challenges being faced by urban flooding and the possible solutions through an expert survey is also presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0955 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Arya2023101643 Serial 224  
Permanent link to this record
 

 
Author Heidari, B.; Prideaux, V.; Jack, K.; Jaber, F.H. url  openurl
  Title A planning framework to mitigate localized urban stormwater inlet flooding using distributed Green Stormwater Infrastructure at an urban scale: Case study of Dallas, Texas Type Journal Article
  Year 2023 Publication Journal of Hydrology Abbreviated Journal  
  Volume 621 Issue Pages 129538  
  Keywords Green stormwater infrastructure, Localized inlet pluvial flooding, Opportunity subwatersheds, Stormwater investment prioritization, Resilient urban watershed planning  
  Abstract Mitigation of localized pluvial flooding is one of the major resiliency goals in urban environments, and Green Stormwater Infrastructure (GSI) has the potential to deliver such an outcome. However, there is a lack of systematic approaches to prioritize investment in different candidate areas. This study provides a framework to identify vulnerable stormwater drainage inlets and their contributing areas, prioritize them, identify dominant factors in their selection, assess the potential of GSI in mitigating their overflows, and compare the impact and its cost to gray infrastructure upgrade alternatives. Using SWMM 5.1.013, decision trees, and a volumetric-based assessment of GSI overflow capture, we applied the framework to the City of Dallas, Texas, for three design storms with three GSI practices— bioretention cells, raingardens, and rainwater harvesting tanks. Results showed that there was a significant increase in the number of overflowing stormwater drainage inlets, referred to as hotspots, and their contributing subwatersheds, referred to as opportunity areas, with more intense storms especially in problematic watersheds. Also, prioritization results provided a series of maps to rank the opportunity areas based on overflow severity, recurrence of the overflows, and GSI availability. Moreover, classification results showed that inlet features, especially the inlet depth, were the dominant factors in the identification of the non-problematic inlets. Finally, the GSI impact assessment showed substantial overflow mitigation even at the “very high” severity levels when GSI is comprehensively deployed across opportunity areas. Despite gray infrastructure upgrades yielding higher reduction levels, their cost per cubic meter was higher than GSI. Therefore, a combination of GSI and gray results in maximum overflow reduction at a lower cost compared to common practices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Heidari2023129538 Serial 226  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: