|   | 
Details
   web
Records
Author Lach, P.; Cathelineau, M.; Brouand, M.; Fiet, N.
Title In-situ Isotopic and Chemical Study of Pyrite from Chu-Sarysu (Kazakhstan) Roll-front Uranium Deposit Type Journal Article
Year 2015 Publication (down) Procedia Earth and Planetary Science Abbreviated Journal
Volume 13 Issue Pages 207-210
Keywords LA-ICP-MS, pyrite, roll-front, SIMS, sulfur isotopy, traces elements, uranium
Abstract Pyrite is common in roll-front type uranium deposit in Chu-sarysu basin, Kazakhstan. Combined in-situ microstructural, isotopic and chemical analysis of pyrite indicates variation in precipitation conditions and in fluid composition. Broad-scale δ34S heterogeneity indicates a complex multi-facet evolution. First generation authigenic framboïdal aggregates are biogenic as demonstrated by the lowest δ34S values of -48‰ to -28‰. The latest generation pyrites are probably hydrothermal with greater δ34S variation (-30‰ to +12‰). This hydrothermal pyrite commonly displays variable enrichment of several trace elements especially As, Co and Ni. Strong variation in δ34S values and variable trace element enrichment is interpreted in terms of continuous variations in fluid composition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1878-5220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ lach_-situ_2015 Serial 182
Permanent link to this record
 

 
Author Hu, K.; Wang, Q.; Tao, G.; Wang, A.; Ding, D.
Title Experimental Study on Restoration of Polluted Groundwater from in Situ Leaching Uranium Mining with Sulfate Reducing Bacteria and ZVI-SRB Type Journal Article
Year 2011 Publication (down) Procedia Earth and Planetary Science Abbreviated Journal
Volume 2 Issue Pages 150-155
Keywords In situ leaching of uranium, nitrate radical, sulfate radical, Sulfate-Reducing Bacteria (SRB), Zero Valent Iron (ZVI)
Abstract In the case of in situ leaching of uranium, the primitive geochemical environment for groundwater is changed since leachant is injected into the water beaving uranium deposit. This increases the concentration of uranium and results in the groundwater contamination.Microbial reduction technology by Sulfate reducing bacteria and Zero Valent Iron were employed to treat uranium wastewater. The experiments were conducted to evaluate the influence of anion (sulfate and nitrate) on dealing with uranium wastewater. Experimental results show that the utilization of both SRB system and ZVI – SRB system to process uranium wastewater is affected by sulfate ion and nitrate ion. As the concentration of sulfate radical is lower than 4000mg/L, sulfate-reducing bacteria has no influence on precipitated uranium. However, as the concentration of sulfate is more than 6,000mg/L, uranium removal rate decreases significantly, from 80% to 14.1%. When adding sulfate radical on ZVI – SRB system to process uranium wastewater, its uranium removal rate is higher than SRB system. Low concentration of nitrate contributes to reduction metabolism of SRB. High concentration of nitrate inhibits the growth and metabolism of SRB and affects the treatment efficiency of uranium wastewater. When the concentration of nitrate reaches 1500mg/L, uranium removal rate is less than 0.1%. Nevertheless, as the concentration of nitrate is lower than 1000mg/L, uranium removal rate could reach more than 75%. As existence of nitrate radical, uranium removal rate of SRB by adding ZVI is higher than that without adding.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1878-5220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hu_experimental_2011 Serial 202
Permanent link to this record
 

 
Author Merembayev, T.; Yunussov, R.; Yedilkhan, A.
Title Machine Learning Algorithms for Stratigraphy Classification on Uranium Deposits Type Journal Article
Year 2019 Publication (down) Procedia Computer Science Abbreviated Journal
Volume 150 Issue Pages 46-52
Keywords classification, geophysics logging data, machine learning, stratigraphy, uranium deposit
Abstract Machine learning today becomes more and more effective instrument to solve many particular problems, where there are difficulties to apply well known and described math model. In other words – it is a great tool to describe non-linear phenomena. We tried to use this technique to improve existing process of stratigraphy, and reduce costs on site by applying computer leaded predictions on the basis of existing on-field collected data. Article describes usage of machine learning algorithms for stratigraphy boundaries classification based on geophysics logging data for uranium deposit in Kazakhstan. Correct marking of stratigraphy from geophysics logging data is complex non-linear task. To solve this task we applied several algorithms of machine learning: random forest, logistic regression, gradient boosting, k nearest neighbour and XGBoost.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1877-0509 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ merembayev_machine_2019 Serial 113
Permanent link to this record
 

 
Author Frey, S.; Külls, C.; Schlosser, C.
Title New Hydrological Age-Dating techniques using cosmogenic radionuclides Beryllium-7 and Sodium-22 Type Conference Article
Year 2011 Publication (down) Proc. IAEA Conf. Monacco Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Frey2011new Serial 48
Permanent link to this record
 

 
Author Hamutoko, J.; Mapani, B.; Ellmies, R.; Bittner, A.; Külls, C.
Title A fingerprinting method for the identification of uranium sources in alluvial aquifers: An example from the Khan and Swakop Rivers, Namibia Type Journal Article
Year 2014 Publication (down) Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal
Volume 72 Issue Pages 34-42
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Hamutoko2014fingerprinting Serial 19
Permanent link to this record