toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rajfur, M.; Kłos, A.; Wacławek, M. url  openurl
  Title Sorption properties of algae Spirogyra sp. and their use for determination of heavy metal ions concentrations in surface water Type Journal Article
  Year 2010 Publication (up) Bioelectrochemistry Abbreviated Journal  
  Volume 80 Issue 1 Pages 81-86  
  Keywords Biomonitoring, Heavy metal ions, Algae sp., Sorption kinetics, Langmuir isotherm  
  Abstract Kinetics of heavy-metal ions sorption by alga Spirogyra sp. was evaluated experimentally in the laboratory, using both the static and the dynamic approach. The metal ions – Mn2+, Cu2+, Zn2+ and Cd2+ – were sorbed from aqueous solutions of their salts. The static experiments showed that the sorption equilibria were attained in 30min, with 90-95% of metal ions sorbed in first 10min of each process. The sorption equilibria were approximated with the Langmuir isotherm model. The algae sorbed each heavy metal ions proportionally to the amount of this metal ions in solution. The experiments confirmed that after 30min of exposition to contaminated water, the concentration of heavy metal ions in the algae, which initially contained small amounts of these metal ions, increased proportionally to the concentration of metal ions in solution. The presented results can be used for elaboration of a method for classification of surface waters that complies with the legal regulations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1567-5394 ISBN Medium  
  Area Expedition Conference  
  Notes A Selection of Papers presented at the 4th International Workshop on Surface Modification for Chemical and Biochemical Sensing (SMCBS 2009) Approved no  
  Call Number THL @ christoph.kuells @ Rajfur201081 Serial 283  
Permanent link to this record
 

 
Author Stavi, I.; Eldad, S.; Xu, C.; Xu, Z.; Gusarov, Y.; Haiman, M.; Argaman, E. url  openurl
  Title Ancient agricultural terrace walls control floods and regulate the distribution of Asphodelus ramosus geophytes in the Israeli arid Negev Type Journal Article
  Year 2024 Publication (up) Catena Abbreviated Journal  
  Volume 234 Issue Pages 107588  
  Keywords Geo-archaeology, Hydrological connectivity, Hydrological modelling, Runoff harvesting, Soil and water conservation, Watershed management  
  Abstract Ancient stone terrace walls aimed at harvesting water runoff and facilitating crop production are widespread across the drylands of the Middle East and beyond. In addition to retaining the scarce water resource, the terrace walls also conserve soil and thicken its profile along ephemeral stream channels (wadis) by decreasing fluvial connectivity and mitigating erosional processes. In this study, we created hydrological models for three wadis with ancient stone terrace walls in the arid northern Negev of Israel, where the predominant geophyte species is Asphodelus ramosus L. A two-dimensional (2D) rain-on-grid (RoG) approach with a resolution of 2 m was used to simulate the rain events with return periods of 10, 20, 50, and 99 % (10-y, 5-y, 2-y, and yearly, respectively) based on the Intensity-Duration-Frequency rain curves for the region. To evaluate the effect of stone terrace walls on fluvial hydrology and geomorphology, the ground level was artificially elevated by 20 cm at the wall locations in a digital terrain model (DTM), using the built-in HEC-RAS 2D terrain modification tool. Our results showed that the terraced wadis have a high capacity to mitigate runoff loss, but a lesser capacity to delay the peak flow. Yet, for all rainstorm return periods, peak flow mitigation was positively related to the number of terrace walls along the stream channel. Field surveys in two of the studied wadis demonstrated that the A. ramosus clones were found in proximity to the stone terrace walls, presumably due to the greater soil–water content there. The results thus suggest that the terrace walls provide improved habitat conditions for these geophytes, supporting their growth and regulating their distribution along the wadi beds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0341-8162 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Stavi2024107588 Serial 229  
Permanent link to this record
 

 
Author Jana, A.; Unni, A.; Ravuru, S.S.; Das, A.; Das, D.; Biswas, S.; Sheshadri, H.; De, S. url  openurl
  Title In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: A case study with real life uranium alkaline leach liquor Type Journal Article
  Year 2022 Publication (up) Chemical Engineering Journal Abbreviated Journal  
  Volume 428 Issue Pages 131180  
  Keywords In-situ polymerization, Layered double hydroxide, Leach liquor, Uranium adsorption, Uranium recovery  
  Abstract Uranium is used as a fuel for nuclear power plant and can be extracted from different ores, mainly acidic (silicious ore) and alkaline (carbonate ore). Recovery of uranium through acid leaching from silicious ore is well established, whereas, alkaline leaching from carbonate ore is challenging due to the excessive salinity of leach liquor and high concentration of carbonate, bicarbonate and sulphate. Herein, two monomers, acrylic acid (AA) and N, N-methylene bisacrylamide (BAM), selective towards uranyl were intercalated in-situ into the interlayer, followed by their polymerization and cross-linking to form novel polymer intercalated hybrid layered double hydroxide (LDH). The LDH acts as a backbone to overcome coiling and swelling of polymer and anchors them as free-standing. Various parameters, like, the type of metal ions, monomer ratio (AA: BAM) and metal ion ratio (M2+:M3+), were studied to determine the optimum conditions for effective intercalation and polymerization of monomers. Magnesium aluminum (MgAl) LDH with a cross-linked polymer having a monomer ratio of 3:2 (AA: BAM) as intercalating species showed maximum efficiency of uranyl adsorption (1456 mg/g at 30 °C) with highest capacity so far. The distribution coefficient (Kd, l/mg) in the order of 105 suggested that the adsorbent was highly selective for uranyl in the presence of different cations, anions and humic acid. The adsorbent extracts uranium effectively and selectively from a real-life alkaline leach liquor with an efficiency of 96% at 5 g/l dose. Uranium can be recovered from the adsorbent in the form of sodium di-uranate using 2(M) NaOH and was reused for eight cycles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jana_-situ_2022 Serial 209  
Permanent link to this record
 

 
Author Smedley, P.L.; Bearcock, J.M.; Ward, R.S.; Crewdson, E.; Bowes, M.J.; Darling, W.G.; Smith, A.C. url  openurl
  Title Monitoring of methane in groundwater from the Vale of Pickering, UK: Temporal variability and source discrimination Type Journal Article
  Year 2023 Publication (up) Chemical Geology Abbreviated Journal  
  Volume 636 Issue Pages 121640  
  Keywords Aquifer, Biogenic, Ethane, Hydrocarbons, Methane, Shale gas  
  Abstract Groundwater abstracted from aquifers in the Vale of Pickering, North Yorkshire, UK and monitored over the period 2015–2022, shows evidence of variable but commonly high concentrations of dissolved CH4. Sampled groundwater from the Jurassic organic-rich Kimmeridge Clay Formation (boreholes up to 180 m depth) has concentrations up to 57 mg/L, and concentrations up to 59 mg/L are found in groundwater from underlying confined Corallian Group limestone (borehole depths 50–227 m). The high concentrations are mainly from boreholes in the central parts of the vale. Small concentrations of ethane (C2H6, up to 800 μg/L) have been found in the Kimmeridge Clay and confined Corallian groundwaters, and of propane (C3H8, up to 160 μg/L) in deeper boreholes (110–180 m) from these formations. The concentrations are typically higher in groundwater from the deeper boreholes and vary with hydrostatic pressure, reflecting the pressure control on CH4 solubility. The occurrences contrast with groundwater from shallow Quaternary superficial deposits which have low CH4 concentrations (up to 0.39 mg/L), and with the unconfined and semi-confined sections of the Corallian aquifer (up to 0.7 mg/L) around the margins of the vale. Groundwater from the Quaternary, Kimmeridge Clay formations and to a small extent the confined Corallian aquifer, supports local private-water supplies, that from the peripheral unconfined sections of Corallian also supports public supply for towns and villages across the region. Dissolved methane/ethane (C1/C2) ratios and stable-isotopic compositions (δ13C-CH4, δ2H-CH4 and δ13C-CO2) suggest that the high-CH4 groundwater from both the Kimmeridge Clay and confined Corallian formations derives overwhelmingly from biogenic reactions, the methanogenesis pathway by CO2 reduction. A small minority of groundwater samples shows a more enriched δ13C-CH4 composition (−50 to −44 ‰) which has been interpreted as due to anaerobic or aerobic methylotrophic oxidation in situ or post-sampling oxidation, rather than derivation by a thermogenic route. Few of the existing groundwater sites are proximal to abandoned or disused conventional hydrocarbon wells that exist in the region, and little evidence has been found for an influence on groundwater dissolved gases from these sites. The Vale of Pickering has also been under recent consideration for development of an unconventional hydrocarbon (shale-gas) resource. In this context, the monitoring of dissolved gases has been an important step in establishing the high-CH4 baseline of groundwaters from Jurassic deposits in the region and in apportioning their sources and mechanisms of genesis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ smedley_monitoring_2023 Serial 172  
Permanent link to this record
 

 
Author Etschmann, B.; Liu, W.; Li, K.; Dai, S.; Reith, F.; Falconer, D.; Kerr, G.; Paterson, D.; Howard, D.; Kappen, P.; Wykes, J.; Brugger, J. url  openurl
  Title Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits Type Journal Article
  Year 2017 Publication (up) Chemical Geology Abbreviated Journal  
  Volume 463 Issue Pages 29-49  
  Keywords Arsenic, Coal, EXAFS and XANES, germanium, Hydrothermal fluids, Metallogenesis, Speciation, Tungsten  
  Abstract Most of the World’s germanium (Ge) is mined from Ge-rich lignite, where it is commonly associated with elevated arsenic (As), tungsten (W) and beryllium (Be) contents. Over the past decade, new evidence showing that World-class Ge deposits result from the interaction of hydrothermal fluids with organic matter in coal seams has emerged. Yet, the chemical state of Ge and associated metals in lignite remains poorly understood. We used Mega-pixel Synchrotron X-ray Fluorescence (MSXRF), X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) to characterize the oxidation states and chemical bonding environment of Ge, As, and W in two world-class Mesozoic Ge-in-lignite deposits (Lincang, Yunnan, southwestern China; Wulantuga, Inner Mongolia, northeastern China); in lignite-bearing uranium (U) ores from the Beverley deposit (South Australia) hosted in Eocene sandstones; and in lignite and preserved wood in late Oligocene-Miocene fluviatile sediments (Gore, Southland, New Zealand). The aim was to improve our understanding of the enrichment mechanism of Ge in lignite and better evaluate the environmental mobility of Ge and some of the associated metals (specifically As and W) in lignite ores. In all samples, chemical maps show that Ge is distributed homogeneously (down to 2μm) within the organic matter. XANES and EXAFS data show that Ge exists in the tetravalent oxidation state and in a distorted octahedral coordination with O, consistent with complexing of Ge by organic ligands. In some pyrite-bearing samples, a minor fraction of Ge is also present as Ge(IV) in association with pyrite. In contrast, As displays a more complex speciation pattern, sometimes even in a single sample, including As(III), As(V), and As(−I/+II) in solid solution in sulfides. Arsenic in sulfides occurs in anionic and cationic forms, i.e., it shows both the common substitution for S22− and the substitution for Fe recently discovered in some hydrothermal pyrites. Tungsten was present as W(VI) in distorted octahedral (3+3) coordination. The EXAFS data confirm the absence or minor contribution of individual W-rich minerals such as scheelite or ferberite to W mass balance in the studied samples. These data show that Ge, W, and probably some As are scavenged via formation of insoluble, oxygen-bridged metal organic complexes in lignite. Destruction of the organic ligands responsible for fixing Ge and W (As) in these lignites is required for liberating the metals, e.g. from waste materials. Geochemical modelling suggests that Ge, W, Be and As all can be extracted from granitic rocks by dilute, low temperature hydrothermal fluids. Germanium is transported mainly as the tetrahedral Ge(OH)4(aq) complex, but fixed as an octahedral oxy-bridged organic complex. The same situation is valid for W, which is transported at the tetrahedral tungstate ion, but most likely scavenged via formation of a 6-coordinated metal-organic species. The Ge-Be-W±As association in Ge-rich coals reflects the source of the metals as well as related scavenging mechanisms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2541 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ etschmann_enrichment_2017 Serial 183  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: