toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Custódio, D.A.; Ghisi, E. url  openurl
  Title Impact of residential rainwater harvesting on stormwater runoff Type Journal Article
  Year 2023 Publication Journal of Environmental Management Abbreviated Journal  
  Volume 326 Issue Pages 116814  
  Keywords Rainwater harvesting, Residential buildings, Stormwater runoff, Floods, Computer simulation  
  Abstract Population increase, climate change and soil impermeability are factors causing floods in large urban centres. Such places also always have water shortage problems. This research aims to evaluate the influence of rainwater harvesting in residential buildings on stormwater in a basin located in southern Brazil (Rio Cachoeira Basin). Urbanised and non-urbanised areas, soil types, curve numbers and time of concentration of each sub-basin were taken into account. Through the HEC-HMS programme, it was possible to calculate hydrographs for the base scenario (when there is no rainwater harvesting). Then, rainwater tanks for the residential buildings were sized using the computer programme Netuno. In the second scenario, there is rainwater harvesting in all residential buildings. Thus, the hydrographs for the second scenario were also calculated. The peak flow reduction potentials for the sub-basins ranged from 2.7% to 14.3%. The highest percentage (14.3%) did not occur in the sub-basin with the most extensive roof area; such highest peak flow reduction occurred in Bom Retiro sub-basin. In Bom Retiro sub-basin, there are more houses than multi-storey residential buildings. Even when considering the full potential of rainwater harvesting for roof areas of all existing buildings in the Rio Cachoeira Basin, the average potential reduction in peak flow was 7.2%. The conclusion is that rainwater tanks in residential buildings have little influence on stormwater runoff, and the stormwater runoff will be less affected when the area of the hydrographic basin is larger. Thus, the reduction in peak flows is insignificant when considering the flooding in the region.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Custodio2023116814 Serial 231  
Permanent link to this record
 

 
Author Mabrouk, M.; Han, H.; Fan, C.; Abdrabo, K.I.; Shen, G.; Saber, M.; Kantoush, S.A.; Sumi, T. url  openurl
  Title Assessing the effectiveness of nature-based solutions-strengthened urban planning mechanisms in forming flood-resilient cities Type Journal Article
  Year 2023 Publication Journal of Environmental Management Abbreviated Journal  
  Volume 344 Issue Pages 118260  
  Keywords Flood, Urban planning, Sustainable cities, LID, Natural-based solutions, Alexandria  
  Abstract Cities have experienced rapid urbanization-induced harsh climatic events, especially flooding, inevitably resulting in negative and irreversible consequences for urban resilience and endangering residents’ lives. Numerous studies have analyzed the effects of anthropogenic practices (land use changes and urbanization) on flood forecasting. However, non-structural mitigation’s effectiveness, like Nature-Based Solutions (NBS), has yet to receive adequate attention, particularly in the Middle East and North Africa (MENA) region, which have become increasingly significant and indispensable for operationalizing cities efficiently. Therefore, our study investigated the predictive influence of incorporating one of the most common NBS strategies called low-impact development tools (LID) (such as rain gardens, bio-retention cells, green roofs, infiltration trenches, permeable pavement, and vegetative swale) during the urban planning of Alexandria, Egypt, which experiences the harshest rainfall annually and includes various urban patterns. City characteristics-dependent 14 LID scenarios were simulated with recurrence intervals ranging from 2 to 100 years using the LID Treatment Train Tool (LID TTT), depending on calibrated data from 2015 to 2020, by the Nash-Sutcliffe efficiency index and deterministic coefficient, and root-mean-square error with values of 0.97, 0.91, and 0.31, respectively. Our findings confirmed the significant effectiveness of combined LID tools on total flood runoff volume reduction by 73.7%, revealing that different urban patterns can be used in flood-prone cities, provided LID tools are considered in city planning besides grey infrastructure to achieve optimal mitigation. These results, which combined multiple disciplines and were not explicitly mentioned in similar studies in developing countries, may assist municipalities’ policymakers in planning flood-resistant, sustainable cities.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Mabrouk2023118260 Serial 232  
Permanent link to this record
 

 
Author Xu, W.D.; Burns, M.J.; Cherqui, F.; Duchesne, S.; Pelletier, G.; Fletcher, T.D. url  openurl
  Title Real-time controlled rainwater harvesting systems can improve the performance of stormwater networks Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume 614 Issue Pages 128503  
  Keywords Real-time control, Rainwater harvesting systems, Stormwater control measures, Flood mitigation, Source Control, Climate change  
  Abstract Real-Time Control (RTC) technology is increasingly applied in Rainwater Harvesting (RWH) systems to optimise their performance related to water supply and flood mitigation. However, most studies to date have focussed on testing the benefits at an individual site scale, leaving the potential benefits for downstream stormwater networks largely untested. In this study, we developed a methodology to predict how at-source RTC RWH systems influence the behaviour of a stormwater network. Simulation was enabled by coupling the drainage model in SWMM with an RTC RWH model coded using the R software. We modelled two different RTC strategies across a range of system settings (e.g. storage size for RWH and proportion of storage to which RTC is applied) under two different climate scenarios—current and future climates. The simulations showed that RTC reduced flooding volume and peak flow of the stormwater network, leading to a potential mitigation of urban flooding risks, while also providing a decentralised supplementary water supply. Implementing RTC in more of RWH storages yielded greater benefits than simply increasing storage capacity, in both current and future climates. More importantly, the RTC systems are capable of more precisely managing the resultant flow regime in reducing the erosion and restoring the pre-development conditions in sensitive receiving waters. Our study suggests that RTC RWH storages distributed throughout a catchment can substantially improve the performance of existing drainage systems, potentially avoiding or deferring expensive network upgrades. Investments in real-time control technology would appear to be more promising than investments in detention volume alone.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Xu2022128503 Serial 233  
Permanent link to this record
 

 
Author Tariq, A.; Beni, L.H.; Ali, S.; Adnan, S.; Hatamleh, W.A. url  openurl
  Title An effective geospatial-based flash flood susceptibility assessment with hydrogeomorphic responses on groundwater recharge Type Journal Article
  Year 2023 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 23 Issue Pages 100998  
  Keywords Flood hydrology, AHP, Flood susceptibility, FR, Unit stream power, GIS  
  Abstract Floods are one of the most common natural disasters, resulting in the extensive destruction of infrastructure, property, and human life. The destructive potential of a flood depends on numerous factors, including the size of the flood, the rate of flooding, the time it takes for the water to move through a given area, the river’s planform and cross-section geometry, and other similar factors. The present study is a unique analysis of flood mapping that was accomplished with the help of the Analytical Hierarchy Process (AHP), Frequency Ratio (FR), and hydrogeomorphic response to floods by integrating geospatial analysis and unit stream power modeling. The Indus catchment region of Pakistan is where the subject topic is put into practice. According to the hydrologic analysis of the yearly peak discharge, the hydro-station in Gilgit-Baltistan can move boulders measuring up to 0.5 m in height during significant flooding. On the other hand, there will be no change to the geometry of the cross-section throughout 1980–2020 in Gilgit-Baltistan. The flood susceptibility map is constructed using data from twelve influencing parameters, including elevation, proximity to the drainage network, slope, drainage density, geomorphology, rainfall, the curvature of the topography, flow accumulation, geology, land use, Topographic Wetness Index (TWI), and Stream Power Index (SPI). The area under the curve (AUC) approach, which demonstrates a substantial degree of accuracy (85% and 83%), is utilized to evaluate the effectiveness of the AHP and FR. The current study fills the gaps between the geospatial approach and the hydrogeomorphic assessment of flood to determine flood susceptibility.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Tariq2023100998 Serial 234  
Permanent link to this record
 

 
Author Kamruzzaman, M.; Chowdhury, A. url  openurl
  Title Flash flooding considerations aside: Knowledge brokering by the extension and advisory services to adapt a farming system to flash flooding Type Journal Article
  Year 2023 Publication Heliyon Abbreviated Journal  
  Volume 9 Issue 9 Pages 19662  
  Keywords Flash flooding, Knowledge brokering, Extension and advisory services, Farming system, Climate change  
  Abstract The development of agriculture sector and livelihood in Bangladesh are threatened by various climatic stressors, including flash flooding. Therefore, Extension and advisory services (EAS) need to navigate the knowledge landscape effectively to connect various farm actors and help secure the optimum benefits of knowledge and information for making rational decisions. However, little is known how EAS can perform this task to combat various effects of climate change. This study investigates the means of brokering knowledge by the EAS to help the farming sector adapt to flash flooding. The research was conducted in the north-eastern part of Bangladesh with 73 staff of the Department of Agricultural Extension (DAE), the largest public EAS in Bangladesh. The results showed that DAE primarily dealt with crop production-related information. However, EAS did not navigate knowledge and information about flash flooding, such as weather forecasting and crop-saving-embankments updates, among the farming actors. Moreover, they missed the broad utilization of internet-based-communication channels to rapidly navigate information and knowledge about possible flash flooding and its adaptation strategies. This article provides some policy implications to effectively support the adaptation of farming system to flash flooding through EAS.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8440 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ KAMRUZZAMAN2023e19662 Serial 235  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: