toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lawrinenko, M.; Kurwadkar, S.; Wilkin, R.T. url  openurl
  Title Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation – A mechanistic approach Type Journal Article
  Year 2023 Publication Geoscience Frontiers Abbreviated Journal  
  Volume 14 Issue 2 Pages 101494  
  Keywords Geochemistry, Iron, Permeable reactive barrier, Plating reactions, Reduction potential, Surface passivation  
  Abstract Permeable reactive barriers (PRBs) are used for groundwater remediation at contaminated sites worldwide. This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron (ZVI) as a reductant and as a reactive material. Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking. Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants. Additionally, there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time. In this review paper, we describe the underlying mechanisms of PRB performance and remove isolated misconceptions. We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products. We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs. Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI. Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity, which negatively impacts hydraulic conductivity, allowing contaminants to potentially bypass the treatment zone. Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-9871 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lawrinenko_long-term_2023 Serial 143  
Permanent link to this record
 

 
Author Ren, Y.; Yang, X.; Hu, X.; Wei, J.; Tang, C. url  openurl
  Title Mineralogical and geochemical evidence for biogenic uranium mineralization in northern Songliao Basin, NE China Type Journal Article
  Year 2022 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 141 Issue Pages 104556  
  Keywords Bacterial sulfate reduction, In-situ S isotope of pyrite, Northern Songliao basin, Sandstone-type uranium deposit, Sifangtai Formation  
  Abstract The sandstone-hosted uranium mineralization areas in the Sanzhao Sag of the northern Songliao Basin have been newly identified. The target stratum is the Upper Cretaceous Sifangtai Formation and the uranium mineralization mainly occurs in the bottom of Sifangtai Formation, corresponding to channel sand bodies in meandering river system, characterized by medium to fine-grained sandstone. This study proposes the uranium metallogenic model through petrographic observation, whole rock geochemistry, mineralogical study of uranium occurrence form (SEM), organic matter rock–eval pyrolysis analysis (REP) and in-situ sulfur isotope determination of different generations of pyrite by LA-MC-ICP-MS. Compared with the sandstones collected in barren reduction and oxidization zones, the mineralized sandstones show obvious increase in the contents of TOC, total sulfur, Y and U. Petrographic observations indicate that organic matters are mainly inherited from land plants. REP data display that the organic matter (OM) disseminated in the sandstone has very low hydrogen index (HI) from around 0 to 21 mg HC/g TOC and varied oxygen index (OI) from 44 to 115 mg CO2/g TOC, corresponding to Type Ⅳ kerogen (degraded kerogen). There are two types of coffinite with different grain size, micro-particles (μm-sized) and large aggregates (generally up to 100 μm) respectively. The coffinite micro spherules exhibit short rod-like or worm-like morphology occurring in clay matrix and cell cavities in degradofusinite or around subidiomorphic-idiomorphic pyrite. The coarse-grained coffinite contains other mineral facies (e.g. pyrite, quartz) and some of large coffinite aggregates display thrombolite-type microbial structures. The irregular pyrite relict particles in coarse-grained colloidal coffinite have light sulfur isotope compositions characterized by δ34S values from –39.96‰ to –49.89‰. The δ34S values of colloidal pyrite in replacement of OM or of the sub-idiomorphic FeS2 cement filling in the cavities of OM range from –52.77‰ to –13.88‰. Some of sub-idiomorphic pyrite cement and idiomorphic crystal have the heavier signature from – 27.06‰ to + 14.23‰. The light sulfur isotope signature suggests that the sulfur originates from bacterial sulfate reduction (BSR). The OM replacement by pyrite and the highest OI values recorded by REP in uranium mineralized samples are lines of evidence of biodegradation. Bacteria use the organic matter as food source and produce isotopically light reduced sulfur species. Oxygenated uranium-bearing waters infiltrated through the denudated windows at Daqing placanticline into the porous reduced sandstones deposited in the Sanzhao Sag. Uranium was indirectly reduced by BSR-derived iron disulfides or directly reduced by sulfate-reducing bacteria.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ren_mineralogical_2022 Serial 144  
Permanent link to this record
 

 
Author Liesch, T.; Hinrichsen, S.; Goldscheider, N. url  openurl
  Title Uranium in groundwater — Fertilizers versus geogenic sources Type Journal Article
  Year 2015 Publication Science of The Total Environment Abbreviated Journal  
  Volume 536 Issue Pages 981-995  
  Keywords Drinking water, Fertilizer, Geogenic background, Groundwater, Uranium  
  Abstract Due to its radiological and toxicological properties even at low concentration levels, uranium is increasingly recognized as relevant contaminant in drinking water from aquifers. Uranium originates from different sources, including natural or geogenic, mining and industrial activities, and fertilizers in agriculture. The goal of this study was to obtain insights into the origin of uranium in groundwater while differentiating between geogenic sources and fertilizers. A literature review concerning the sources and geochemical processes affecting the occurrence and distribution of uranium in the lithosphere, pedosphere and hydrosphere provided the background for the evaluation of data on uranium in groundwater at regional scale. The state of Baden-Württemberg, Germany, was selected for this study, because of its hydrogeological and land-use diversity, and for reasons of data availability. Uranium and other parameters from N=1935 groundwater monitoring sites were analyzed statistically and geospatially. Results show that (i) 1.6% of all water samples exceed the German legal limit for drinking water (10μg/L); (ii) The range and spatial distribution of uranium and occasional peak values seem to be related to geogenic sources; (iii) There is a clear relation between agricultural land-use and low-level uranium concentrations, indicating that fertilizers generate a measurable but low background of uranium in groundwater.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ liesch_uranium_2015 Serial 145  
Permanent link to this record
 

 
Author N, D.; Panda, B.; S, C.; V, P.M.; Singh, D.K.; L, R.A.; Sahoo, S.K. url  openurl
  Title Spatio-temporal variations of Uranium in groundwater: Implication to the environment and human health Type Journal Article
  Year 2021 Publication Science of The Total Environment Abbreviated Journal  
  Volume 775 Issue Pages 145787  
  Keywords Groundwater, Health risk, Speciation, Stable isotopes, Statistics, Uranium  
  Abstract Groundwater overexploitation has resulted in huge scarcity and increase in the demand for water and food security in India. Groundwater in India has been observed to have experienced various water quality issues like arsenic, fluoride, and Uranium (U) contamination, leading to risk in human health. Markedly, the health risk of higher U in drinking water, as well as its chemical toxicity in groundwater have adverse effects on human. This study has reported occurrence of U as an emerging and widespread phenomenon in South Indian groundwater. Data on U in groundwater were generated from 284 samples along the Cretaceous Tertiary boundary within 4 seasons viz. pre-monsoon (PRM), southwest monsoon (SWM), northeast monsoon (NEM), and post-monsoon (POM). High U concentrations (74 μgL−1) showed to be above the World Health Organization’s provisional guideline value of 30 μgL−1. The geochemical, stable isotope and geophysical studies suggested that U in groundwater could vary with respect to season and was noted to be highest during NEM. The bicarbonate (HCO3) released by weathering process during monsoon could affect the saturation index (SI)Calcite and carbonate species of U. However, the primary source of U was found to be due to geogenic factors, like weathering, dissolution, and groundwater level fluctuation, and that, U mobilization could be enhanced due to anthropogenic activities. The findings further indicated that groundwater in the study area has reached the alarming stage of chemical toxicity. Hence, it is urgent and imperative that workable management strategies for sustainable drinking water source be developed and preventive measures be undertaken, relative to these water quality concerns to mitigate their disconcerting effect on human health.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ n_spatio-temporal_2021 Serial 146  
Permanent link to this record
 

 
Author Lapworth, D.J.; Brauns, B.; Chattopadhyay, S.; Gooddy, D.C.; Loveless, S.E.; MacDonald, A.M.; McKenzie, A.A.; Muddu, S.; Nara, S.N.V. url  openurl
  Title Elevated uranium in drinking water sources in basement aquifers of southern India Type Journal Article
  Year 2021 Publication Applied Geochemistry Abbreviated Journal  
  Volume 133 Issue Pages 105092  
  Keywords Anthropogenic, Drinking waters, Geogenic, India, Speciation, Uranium  
  Abstract Groundwater resources in the crystalline basement complex of India are crucial for supplying drinking water in both rural and urban settings. Groundwater depletion is recognised as a challenge across parts of India due to over-abstraction, but groundwater quality constraints are perhaps even more widespread and often overlooked at the local scale. Uranium contamination in basement aquifers has been reported in many parts of India, locally exceeding WHO drinking water guideline values of 30 μg/L and posing a potential health risk. In this study 130 water samples were collected across three crystalline basement catchments to assess hydrochemical, geological and anthropogenic controls on uranium mobility and occurrence in drinking water sources. Groundwaters with uranium concentrations exceeding 30 μg/L were found in all three study catchments (30% of samples overall), with concentrations up to 589 μg/L detected. There appears to be a geological control on the occurrence of uranium in groundwater with the granitic gneiss of the Halli and Bengaluru study areas having higher mean uranium concentrations (51 and 68 μg/L respectively) compared to the sheared gneiss of the Berambadi catchment (6.4 μg/L). Uranium – nitrate relationships indicate that fertiliser sources are not a major control on uranium occurrence in these case studies which include two catchments with a long legacy of intense agricultural land use. Geochemical modelling confirmed uranium speciation was dominated by uranyl carbonate species, particularly ternary complexes with calcium, consistent with uranium mobility being affected by redox controls and the presence of carbonates. Urban leakage in Bengaluru led to low pH and low bicarbonate groundwater hydrochemistry, reducing uranium mobility and altering uranium speciation. Since the majority of inhabitants in Karnataka depend on groundwater abstraction from basement aquifers for drinking water and domestic use, exposure to elevated uranium is a public health concern. Improved monitoring, understanding and treatment of high uranium drinking water sources in this region is essential to safeguard public health.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lapworth_elevated_2021 Serial 147  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: