|   | 
Details
   web
Records
Author Merembayev, T.; Yunussov, R.; Yedilkhan, A.
Title Machine Learning Algorithms for Stratigraphy Classification on Uranium Deposits Type Journal Article
Year 2019 Publication Procedia Computer Science Abbreviated Journal
Volume 150 Issue Pages 46-52
Keywords classification, geophysics logging data, machine learning, stratigraphy, uranium deposit
Abstract Machine learning today becomes more and more effective instrument to solve many particular problems, where there are difficulties to apply well known and described math model. In other words – it is a great tool to describe non-linear phenomena. We tried to use this technique to improve existing process of stratigraphy, and reduce costs on site by applying computer leaded predictions on the basis of existing on-field collected data. Article describes usage of machine learning algorithms for stratigraphy boundaries classification based on geophysics logging data for uranium deposit in Kazakhstan. Correct marking of stratigraphy from geophysics logging data is complex non-linear task. To solve this task we applied several algorithms of machine learning: random forest, logistic regression, gradient boosting, k nearest neighbour and XGBoost.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1877-0509 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ merembayev_machine_2019 Serial 113
Permanent link to this record
 

 
Author Dutova, E.M.; Nikitenkov, A.N.; Pokrovskiy, V.D.; Banks, D.; Frengstad, B.S.; Parnachev, V.P.
Title Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation Type Journal Article
Year 2017 Publication Journal of Environmental Radioactivity Abbreviated Journal
Volume 178-179 Issue Pages 63-76
Keywords Groundwater, Hydrochemical modelling, Mineralisation, Natural uranium, Ore, Solubility
Abstract Generic hydrochemical modelling of a grantoid-groundwater system, using the Russian software “HydroGeo”, has been carried out with an emphasis on simulating the accumulation of uranium in the aqueous phase. The baseline model run simulates shallow granitoid aquifers (U content 5 ppm) under conditions broadly representative of southern Norway and southwestern Siberia: i.e. temperature 10 °C, equilibrated with a soil gas partial CO2 pressure (PCO2, open system) of 10−2.5 atm. and a mildly oxidising redox environment (Eh = +50 mV). Modelling indicates that aqueous uranium accumulates in parallel with total dissolved solids (or groundwater mineralisation M – regarded as an indicator of degree of hydrochemical evolution), accumulating most rapidly when M = 550–1000 mg L−1. Accumulation slows at the onset of saturation and precipitation of secondary uranium minerals at M = c. 1000 mg L−1 (which, under baseline modelling conditions, also corresponds approximately to calcite saturation and transition to Na-HCO3 hydrofacies). The secondary minerals are typically “black” uranium oxides of mixed oxidation state (e.g. U3O7 and U4O9). For rock U content of 5–50 ppm, it is possible to generate a wide variety of aqueous uranium concentrations, up to a maximum of just over 1 mg L−1, but with typical concentrations of up to 10 μg L−1 for modest degrees of hydrochemical maturity (as indicated by M). These observations correspond extremely well with real groundwater analyses from the Altai-Sayan region of Russia and Norwegian crystalline bedrock aquifers. The timing (with respect to M) and degree of aqueous uranium accumulation are also sensitive to Eh (greater mobilisation at higher Eh), uranium content of rocks (aqueous concentration increases as rock content increases) and PCO2 (low PCO2 favours higher pH, rapid accumulation of aqueous U and earlier saturation with respect to uranium minerals).
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0265-931x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ dutova_modelling_2017 Serial 114
Permanent link to this record
 

 
Author Priestley, S.C.; Payne, T.E.; Harrison, J.J.; Post, V.E.A.; Shand, P.; Love, A.J.; Wohling, D.L.
Title Use of U-isotopes in exploring groundwater flow and inter-aquifer leakage in the south-western margin of the Great Artesian Basin and Arckaringa Basin, central Australia Type Journal Article
Year 2018 Publication Applied Geochemistry Abbreviated Journal
Volume 98 Issue Pages 331-344
Keywords Activity ratios, Central Australia, Great Artesian Basin, Hydrogeology, Sequential extraction, Uranium isotopes
Abstract The distribution of uranium isotopes (238U and 234U) in groundwaters of the south-western margin of the Great Artesian Basin (GAB), Australia, and underlying Arckaringa Basin were examined using groundwater samples and a sequential extraction of aquifer sediments. Rock weathering, the geochemical environment and α-recoil of daughter products control the 238U and 234U isotope distributions giving rise to large spatial variations. Generally, the shallowest aquifer (J aquifer) contains groundwater with higher 238U activity concentrations and 234U/238U activity ratios close to secular equilibrium. However, the source input of uranium is spatially variable as intermittent recharge from ephemeral rivers passes through rocks that have already undergone extensive weathering and contain low 238U activity concentrations. Other locations in the J aquifer that receive little or no recharge contain higher 238U activity concentrations because uranium from localised uranium-rich rocks have been leached into solution and the geochemical environment allows the uranium to be kept in solution. The geochemical conditions of the deeper aquifers generally result in lower 238U activity concentrations in the groundwater accompanied by higher 234U/238U activity ratios. The sequential extraction of aquifer sediments showed that α-recoil of 234U from the solid mineral phases into the groundwater, rather than dissolution of, or exchange with the groundwater accessible minerals in the aquifer, caused enrichment of groundwater 234U/238U activity ratios in the Boorthanna Formation. Decay of 238U in uranium-rich coatings on J aquifer sediments caused resistant phase 234U/238U activity ratio enrichment. The groundwater 234U/238U activity ratio is dependent on groundwater residence time or flow rate, depending on the flow path trajectory. Thus, uranium isotope variations confirmed earlier groundwater flow interpretations based on other tracers; however, spatial heterogeneity, and the lack of clear regional correlations, made it difficult to identify recharge and inter-aquifer leakage.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ priestley_use_2018 Serial 115
Permanent link to this record
 

 
Author Strandmann, P.A.E.P. von; Reynolds, B.C.; Porcelli, D.; James, R.H.; Calsteren, P. van; Baskaran, M.; Burton, K.W.
Title Assessing continental weathering rates and actinide transport in the Great Artesian Basin Type Journal Article
Year 2006 Publication Geochimica et Cosmochimica Acta Abbreviated Journal
Volume 70 Issue 18, Supplement Pages 497
Keywords
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-7037 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ strandmann_assessing_2006 Serial 116
Permanent link to this record
 

 
Author Frumkin, A.; Gvirtzman, H.
Title Cross-formational rising groundwater at an artesian karstic basin: the Ayalon Saline Anomaly, Israel Type Journal Article
Year 2006 Publication Journal of Hydrology Abbreviated Journal
Volume 318 Issue 1 Pages 316-333
Keywords Confined karst, Groundwater, HS, Maze caves, Rising water, Yarkon–Taninim aquifer
Abstract It is proposed that a geothermal artesian karstic system at the central part of the Yarkon–Taninim aquifer creates the ‘Ayalon Saline Anomaly’ (ASA), whose mechanism has been under debate for several decades. A 4-year-long detailed groundwater monitoring was carried out at 68 new shallow boreholes in the Ayalon region, accompanied by a comprehensive survey of karstic voids. Results indicate the rising of warm-brackish groundwater through highly permeable swarms of karstic shafts, serving as an outflow of the artesian geothermal system. The ASA area contains ‘hot spots’, where groundwater contrasts with ‘normal’ water hundreds of meters away. The ASA temperature reaches 30°C (∼5°C warmer than its surroundings), chloride concentration reaches 528mg/l (50–100mg/l in the surrounding), H2S concentration reaches 5.6mg/l (zero all around) and pH value is 7.0 (compared with 7.8 around). Subsequently, the hydrothermal water flows laterally of at the watertable horizon through horizontal conduits, mixing with ‘normal’ fresh water which had circulated at shallow depth. Following rainy seasons, maximal watertable rise is observed in the ASA compared to its surroundings. Regional hydrogeology considerations suggest that the replenishment area for the ASA water is at the Samaria Mountains, east of the ASA. The water circulates to a great depth while flowing westward, and a cross-formational upward flow is then favored close the upper sub-aquifer’s confinement border.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ frumkin_cross-formational_2006 Serial 117
Permanent link to this record