toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, Y.; Hong, Y.; Huang, D.; Dai, X.; Zhang, M.; Liu, Y.; Xu, Z. url  openurl
  Title Risk assessment management and emergency plan for uranium tailings pond Type Journal Article
  Year 2022 Publication Journal of Radiation Research and Applied Sciences Abbreviated Journal  
  Volume 15 Issue 3 Pages 83-90  
  Keywords Emergency management, Interpreted structural model (ISM), Resilience, Risk coupling, Uranium tailings pond  
  Abstract The safety of uranium tailings pond is closely related to social stability and economic development, so it is necessary to improve the emergency management of uranium tailings pond to ensure its safety by adjusting the emergency plan. The Interpretive Structural Model (ISM) is used to analyze the structural relationship between the main risk factors leading to the occurrence of emergencies. The results show that attention should be paid to the risk factors originating from humans and infrastructures, and effective management measures should be adopted in the process of emergency management, for example, people build tighter employee access system, clarify the responsibilities of employees at all levels, and improve monitoring and organizational means. According to the results of ISM analysis, a structural risk control system can be constructed, and a defensive barrier that can effectively block the risk coupling transmission can be designed to prevent the risk from being transformed into an event. For other risks, system resilience management should be strengthened to respond to risks. The process is set as emergency response and accident response. Different management objects use different management methods to make emergency management work efficiently.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-8507 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ chen_risk_2022 Serial 128  
Permanent link to this record
 

 
Author Pereira, A.J.S.C.; Neves, L.J.P.F. url  openurl
  Title Estimation of the radiological background and dose assessment in areas with naturally occurring uranium geochemical anomalies—a case study in the Iberian Massif (Central Portugal) Type Journal Article
  Year 2012 Publication Journal of Environmental Radioactivity Abbreviated Journal  
  Volume 112 Issue Pages 96-107  
  Keywords Background, Dose assessment, Geochemical anomalies, Mine remediation, Natural radioactivity, Uranium  
  Abstract Naturally occurring uranium geochemical anomalies, representative of the several thousand recognized in the Portuguese section of the Iberian Massif and outcropping in three target areas with a total of a few thousand square metres, were subjected to a detailed study (1:1000 scale) to evaluate the radiological health-risk on the basis of a dose assessment. To reach this goal some radioactive isotopes from the uranium, thorium and potassium radioactive series were measured in 52 samples taken from different environmental compartments: soils, stream sediments, water, foodstuff (vegetables) and air; external radiation was also measured through a square grid of 10×10m, with a total of 336 measurements. The results show that some radioisotopes have high activities in all the environmental compartments as well as a large variability, namely for those of the uranium decay chain, which is a common situation in the regional geological setting. Isotopic disequilibrium is also common and led to an enrichment of several isotopes in the different pathways, as is the case of 226Ra; maximum values of 1.76BqL−1 (water), 986Bqkg−1 (soils) and 18.9Bqkg−1 (in a turnip sample) were measured. On the basis of a realistic scenario combined with the experimental data, the effective dose from exposure to ionizing radiation for two groups of the population (rural and urban) was calculated; the effective dose is variable between 8.0 and 9.5mSvyear−1, which is 3–4 times higher than the world average. Thus, the radiological health-risk for these populations could be significant and the studied uranium anomalies must be taken into account in the assessment of the geochemical background. The estimated effective dose can also be used as typical of the background of the Beiras uranium metalogenetic province and therefore as a “benchmark” in the remediation of the old uranium mining sites.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0265-931x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ pereira_estimation_2012 Serial 129  
Permanent link to this record
 

 
Author Saini, K.; Singh, P.; Bajwa, B.S. url  openurl
  Title Comparative statistical analysis of carcinogenic and non-carcinogenic effects of uranium in groundwater samples from different regions of Punjab, India Type Journal Article
  Year 2016 Publication Applied Radiation and Isotopes Abbreviated Journal  
  Volume 118 Issue Pages 196-202  
  Keywords Carcinogenic, Groundwater, LED fluorimeter, Uranium  
  Abstract LED flourimeter has been used for microanalysis of uranium concentration in groundwater samples collected from six districts of South West (SW), West (W) and North East (NE) Punjab, India. Average value of uranium content in water samples of SW Punjab is observed to be higher than WHO, USEPA recommended safe limit of 30µgl−1 as well as AERB proposed limit of 60µgl−1. Whereas, for W and NE region of Punjab, average level of uranium concentration was within AERB recommended limit of 60µgl−1. Average value observed in SW Punjab is around 3–4 times the value observed in W Punjab, whereas its value is more than 17 times the average value observed in NE region of Punjab. Statistical analysis of carcinogenic as well as non carcinogenic risks due to uranium have been evaluated for each studied district.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ saini_comparative_2016 Serial 130  
Permanent link to this record
 

 
Author Prusty, S.; Somu, P.; Sahoo, J.K.; Panda, D.; Sahoo, S.K.; Sahoo, S.K.; Lee, Y.R.; Jarin, T.; Sundar, L.S.; Rao, K.S. url  openurl
  Title Adsorptive sequestration of noxious uranium (VI) from water resources: A comprehensive review Type Journal Article
  Year 2022 Publication Chemosphere Abbreviated Journal  
  Volume 308 Issue Pages 136278  
  Keywords Adsorbents, Adsorption, Techniques, Uranium, Wastewater  
  Abstract Groundwater is usually utilized as a drinking water asset everywhere. Therefore, groundwater defilement by poisonous radioactive metals such as uranium (VI) is a major concern due to the increase in nuclear power plants as well as their by-products which are released into the watercourses. Waste Uranium (VI) can be regarded as a by-product of the enrichment method used to produce atomic energy, and the hazard associated with this is due to the uranium radioactivity causing toxicity. To manage these confronts, there are so many techniques that have been introduced but among those adsorptions is recognized as a straightforward, successful, and monetary innovation, which has gotten major interest nowadays, despite specific drawbacks regarding operational as well as functional applications. This review summarizes the various adsorbents such as Bio-adsorbent/green materials, metal oxide-based adsorbent, polymer based adsorbent, graphene oxide based adsorbent, and magnetic nanomaterials and discuss their synthesis methods. Furthermore, this paper emphasis on adsorption process by various adsorbents or modified forms under different physicochemical conditions. In addition to this adsorption mechanism of uranium (VI) onto different adsorbent is studied in this article. Finally, from the literature reviewed conclusion have been drawn and also proposed few future research suggestions.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ prusty_adsorptive_2022 Serial 131  
Permanent link to this record
 

 
Author Post, V.E.A.; Vassolo, S.I.; Tiberghien, C.; Baranyikwa, D.; Miburo, D. url  openurl
  Title Weathering and evaporation controls on dissolved uranium concentrations in groundwater – A case study from northern Burundi Type Journal Article
  Year 2017 Publication Science of The Total Environment Abbreviated Journal  
  Volume 607-608 Issue Pages 281-293  
  Keywords Geochemical modelling, Hydrochemistry, Lake Tshohoha South, Public health, Radionuclides, Water supply  
  Abstract The potential use of groundwater for potable water supply can be severely compromised by natural contaminants such as uranium. The environmental mobility of uranium depends on a suite of factors including aquifer lithology, redox conditions, complexing agents, and hydrological processes. Uranium concentrations of up to 734μg/L are found in groundwater in northern Burundi, and the objective of the present study was to identify the causes for these elevated concentrations. Based on a comprehensive data set of groundwater chemistry, geology, and hydrological measurements, it was found that the highest dissolved uranium concentrations in groundwater occur near the shores of Lake Tshohoha South and other smaller lakes nearby. A model is proposed in which weathering and evapotranspiration during groundwater recharge, flow and discharge exert the dominant controls on the groundwater chemical composition. Results of PHREEQC simulations quantitatively confirm this conceptual model and show that uranium mobilization followed by evapo-concentration is the most likely explanation for the high dissolved uranium concentrations observed. The uranium source is the granitic sand, which was found to have a mean elemental uranium content of 14ppm, but the exact mobilization process could not be established. Uranium concentrations may further be controlled by adsorption, especially where calcium-uranyl‑carbonate complexes are present. Water and uranium mass balance calculations for Lake Tshohoha South are consistent with the inferred fluxes and show that high‑uranium groundwater represents only a minor fraction of the overall water input to the lake. These findings highlight that the evaporation effects that cause radionuclide concentrations to rise to harmful levels in groundwater discharge areas are not only confined to arid regions, and that this should be considered when selecting suitable locations for water supply wells.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ post_weathering_2017 Serial 132  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: