|   | 
Details
   web
Records
Author Priestley, S.C.; Payne, T.E.; Harrison, J.J.; Post, V.E.A.; Shand, P.; Love, A.J.; Wohling, D.L.
Title (down) Use of U-isotopes in exploring groundwater flow and inter-aquifer leakage in the south-western margin of the Great Artesian Basin and Arckaringa Basin, central Australia Type Journal Article
Year 2018 Publication Applied Geochemistry Abbreviated Journal
Volume 98 Issue Pages 331-344
Keywords Activity ratios, Central Australia, Great Artesian Basin, Hydrogeology, Sequential extraction, Uranium isotopes
Abstract The distribution of uranium isotopes (238U and 234U) in groundwaters of the south-western margin of the Great Artesian Basin (GAB), Australia, and underlying Arckaringa Basin were examined using groundwater samples and a sequential extraction of aquifer sediments. Rock weathering, the geochemical environment and α-recoil of daughter products control the 238U and 234U isotope distributions giving rise to large spatial variations. Generally, the shallowest aquifer (J aquifer) contains groundwater with higher 238U activity concentrations and 234U/238U activity ratios close to secular equilibrium. However, the source input of uranium is spatially variable as intermittent recharge from ephemeral rivers passes through rocks that have already undergone extensive weathering and contain low 238U activity concentrations. Other locations in the J aquifer that receive little or no recharge contain higher 238U activity concentrations because uranium from localised uranium-rich rocks have been leached into solution and the geochemical environment allows the uranium to be kept in solution. The geochemical conditions of the deeper aquifers generally result in lower 238U activity concentrations in the groundwater accompanied by higher 234U/238U activity ratios. The sequential extraction of aquifer sediments showed that α-recoil of 234U from the solid mineral phases into the groundwater, rather than dissolution of, or exchange with the groundwater accessible minerals in the aquifer, caused enrichment of groundwater 234U/238U activity ratios in the Boorthanna Formation. Decay of 238U in uranium-rich coatings on J aquifer sediments caused resistant phase 234U/238U activity ratio enrichment. The groundwater 234U/238U activity ratio is dependent on groundwater residence time or flow rate, depending on the flow path trajectory. Thus, uranium isotope variations confirmed earlier groundwater flow interpretations based on other tracers; however, spatial heterogeneity, and the lack of clear regional correlations, made it difficult to identify recharge and inter-aquifer leakage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ priestley_use_2018 Serial 115
Permanent link to this record
 

 
Author Yabusaki, S.B.; Fang, Y.; Long, P.E.; Resch, C.T.; Peacock, A.D.; Komlos, J.; Jaffe, P.R.; Morrison, S.J.; Dayvault, R.D.; White, D.C.; Anderson, R.T.
Title (down) Uranium removal from groundwater via in situ biostimulation: Field-scale modeling of transport and biological processes Type Journal Article
Year 2007 Publication Journal of Contaminant Hydrology Abbreviated Journal
Volume 93 Issue 1 Pages 216-235
Keywords Bioremediation, Biostimulation, Field experiment, Iron, Reactive transport, Sulfate, Uranium
Abstract During 2002 and 2003, bioremediation experiments in the unconfined aquifer of the Old Rifle UMTRA field site in western Colorado provided evidence for the immobilization of hexavalent uranium in groundwater by iron-reducing Geobacter sp. stimulated by acetate amendment. As the bioavailable Fe(III) terminal electron acceptor was depleted in the zone just downgradient of the acetate injection gallery, sulfate-reducing organisms came to dominate the microbial community. In the present study, we use multicomponent reactive transport modeling to analyze data from the 2002 field experiment to identify the dominant transport and biological processes controlling uranium mobility during biostimulation, and determine field-scale parameters for these modeled processes. The coupled process simulation approach was able to establish a quantitative characterization of the principal flow, transport, and reaction processes based on the 2002 field experiment, that could be applied without modification to describe the 2003 field experiment. Insights gained from this analysis include field-scale estimates of the bioavailable Fe(III) mineral threshold for the onset of sulfate reduction, and rates for the Fe(III), U(VI), and sulfate terminal electron accepting processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-7722 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ yabusaki_uranium_2007 Serial 156
Permanent link to this record
 

 
Author Zhou, Y.; Li, G.; Xu, L.; Liu, J.; Sun, Z.; Shi, W.
Title (down) Uranium recovery from sandstone-type uranium deposit by acid in-situ leaching – an example from the Kujieertai Type Journal Article
Year 2020 Publication Hydrometallurgy Abbreviated Journal
Volume 191 Issue Pages 105209
Keywords Acid in-situ leaching, Sandstone-type uranium deposit, Uranium deportment in the ore, Uranium recovery, Water-rock interaction
Abstract The factors influencing uranium recovery in water-rock systems during acid in-situ leaching (ISL) were studied at the Kujieertai uranium deposit in Xinjiang. Using an ISL unit, a field leach trial (FLT) had been carried out to test the sequential effects of a leaching solution without oxidant (H2SO4 solution 4–8 g/L) and a leaching solution with oxidant (H2SO4 3–7 g/L, and Fe (III) 2–6 g/L). The observation of the leaching process revealed clearly defined stages of uranium release from the solid mineral to solution. Uranium mobilization from solid mineral into solution can be described in four stages. At the beginning of the acid ISL process, there was no oxidant to be added to the leaching solution and the desorption of hexavalent uranyl ions in the open pores, as well as dissolution of hexavalent uranium minerals, led to a short-term peak in the pregnant solution, which happened while pH decreased from about 5.3 to 2.62. Following the depletion of the adsorbed hexavalent uranium and a decline in uranium dissolution intensity, the addition of Fe(III) facilitated the oxidation of tetravalent uranium, which enabled intensive uranium mobilization again. During this process, the dissolution of uranium had a strong positive correlation with the reduction of Fe(III) and Eh in the leach solution. Beside hydrochemical factors, the deportment of uranium was also an important factor affecting uranium recovery. Uranium located in the open pores can be completely exposed to the solution and the mobilization intensity was significantly affected by hydrogeochemical conditions; but the uranium present in microfissures and in the ore matrix could not be fully exposed to the solution, so, their dissolution intensity was primarily controlled by corrosion and permeability of the ore. In general, the hydrogeochemical conditions and the deportment of uranium were the external and internal factors that significantly affected the dissolution and recovery of uranium in the early and middle stages of the FLT. However, in the latest stages, due to uranium depletion, enhancing the chemical potential of the leaching solution, specifically acidity and/or the amount of oxidant, had little improvement on uranium recovery.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ zhou_uranium_2020 Serial 205
Permanent link to this record
 

 
Author Silva, M.L. da; Bonotto, D.M.
Title (down) Uranium isotopes in groundwater occurring at Amazonas State, Brazil Type Journal Article
Year 2015 Publication Applied Radiation and Isotopes Abbreviated Journal
Volume 97 Issue Pages 24-33
Keywords Amazon area, Dissolved uranium, Groundwater, Tube wells, U/U activity ratio
Abstract This paper reports the behavior of the dissolved U-isotopes 238U and 234U in groundwater providing from 15 cities in Amazonas State, Brazil. The isotope dilution technique accompanied by alpha spectrometry were utilized for acquiring the U content and 234U/238U activity ratio (AR) data, 0.01–1.4µgL−1 and 1.0–3.5, respectively. These results suggest that the water is circulating in a reducing environment and leaching strata containing minerals with low uranium concentration. A tendency to increasing ARs values following the groundwater flow direction is identified in Manaus city. The AR also increases according to the SW–NE directions: Uarini→Tefé; Manacapuru→Manaus; Presidente Figueiredo→São Sebastião do Uatumã; and Boa Vista do Ramos→Parintins. Such trends are possibly related to several factors, among them the increasing acid character of the waters. The waters analyzed are used for human consumption and the highest dissolved U content is much lower than the maximum established by the World Health Organization. Therefore, in view of this radiological parameter they can be used for drinking purposes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-8043 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ silva_uranium_2015 Serial 140
Permanent link to this record
 

 
Author Ammar, F.H.; Deschamps, P.; Chkir, N.; Zouari, K.; Agoune, A.; Hamelin, B.
Title (down) Uranium isotopes as tracers of groundwater evolution in the Complexe Terminal aquifer of southern Tunisia Type Journal Article
Year 2020 Publication Quaternary International Abbreviated Journal
Volume 547 Issue Pages 33-49
Keywords CT southern Tunisia, Holocene, Mixing, Radicarbon, Uranium isotopes, Water-rock interaction
Abstract The Complexe Terminal (CT) multi-layer aquifer is formed by Neogene/Paleogene sand deposits, Upper Senonian (Campanian-Maastrichtian limestones) and Turonian carbonates. The chemical composition and isotopes of carbon and uranium were investigated in groundwater sampled from the main hydrogeological units of the (CT) aquifer in southern Tunisia. We paid special attention to the variability of uranium contents and isotopes ratio (234U/238U) to provide a better understanding of the evolution of the groundwater system. Uranium concentrations range from 1.5 to 19.5 ppb, typical of oxic or mildly reducing conditions in groundwaters. The lowest concentrations are found southeast of the study area, where active recharge is supposed to take place. When looking at the isotope composition, it appears that all the samples, including those from carbonate levels, are in radioactive disequilibrium with significant 234U excess. A clear-cut distinction is observed between Turonian and Senonian carbonate aquifers on the one hand, with 234U/238U activity ratios between 1.1 and 1.8, and the sandy aquifer on the other hand, showing higher ratios from 1.8 to 3.2. The distribution of uranium in this complex aquifer system seems to be in agreement with the lithological variability and are ultimately a function of a number of physical and chemical factors including the uranium content of the hosting geological formation, water-rock interaction and mixing between waters having different isotopic signatures. Significant relationships also appear when comparing the uranium distribution with the major ions composition. It is noticeable that uranium is better correlated with sulfate, calcium and magnesium than with other major ions as chloride or bicarbonate. The 14C activities and δ13C values of DIC cover a wide range of values, from 1.1 pmc to 30.2 pmc and from −3.6‰ to −10.7‰, respectively. 14C model ages estimated by the Fontes and Garnier model are all younger than 22 Ka and indicate that the recharge of CT groundwater occurred mainly during the end of the last Glacial and throughout the Holocene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1040-6182 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ammar_uranium_2020 Serial 119
Permanent link to this record