toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khoury, H.N.; salameh, E.M.; Clark, I.D. url  openurl
  Title (down) Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan Type Journal Article
  Year 2014 Publication Applied Geochemistry Abbreviated Journal  
  Volume 43 Issue Pages 49-65  
  Keywords  
  Abstract Secondary uranium encrustations are hosted in thick travertine and calcrete deposits of Pleistocene–Recent age in central Jordan. The central Jordan varicolored marble and travertine are equivalent to the active metamorphic area in Maqarin, north Jordan. More than 100 samples were collected from the outcrops of the varicolored marble, travertine, calcrete, and the yellow uranium encrustations. The secondary yellow encrustations are mainly composed of uranyl vanadate complexes. Tyuyamunite Ca(UO2)2V25+O8·3(H2O)–strelkinite Na2(UO2)2V2O8·6(H2O) solid solution series are the major components and their composition reflects changes in the Ca/Na ratio in solution. Potentially, new vanadium free calcium uranate phases (restricted to the varicolored marble) were identified with CaO:UO3 ratios different from the known mineral vorlanite (CaU6+)O4. Carbon and oxygen isotope data from calcite in the varicolored marble are characterized by Rayleigh-type enrichment in light isotopes associated with release of 13C and 18O enriched CO2 by high temperature decarbonation during combustion of the bituminous marl. Stable isotope results from uranium hosted travertine and calcrete varieties exhibit a wide range in isotopic values, between decarbonated and normal sedimentary carbonate rocks. The depleted δ13C and δ18O values in the travertine are related to the kinetic reaction of atmospheric CO2 with hyperalkaline Ca(OH)2 water. The gradual enrichment of δ13C and δ18O values in the calcrete towards equilibrium with the surrounding environment is related to continuous evaporation during seasonal dry periods. Uranium mineralization in central Jordan resulted from the interplay of tectonic, climatic, hydrologic, and depositional events. The large distribution of surficial uranium occurrences hosted in travertine and calcrete deposits is related to the artesian ascending groundwater that formed extensive lakes along NNW–SSE trending depressions. Fresh groundwater moved upward through the highly fractured phosphate, bituminous marl and varicolored marble to form unusual highly alkaline water (hydroxide–sulfate type) enriched with sensitive redox elements among which were U and V.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ khoury_mineralogy_2014 Serial 121  
Permanent link to this record
 

 
Author Ren, Y.; Yang, X.; Hu, X.; Wei, J.; Tang, C. url  openurl
  Title (down) Mineralogical and geochemical evidence for biogenic uranium mineralization in northern Songliao Basin, NE China Type Journal Article
  Year 2022 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 141 Issue Pages 104556  
  Keywords Bacterial sulfate reduction, In-situ S isotope of pyrite, Northern Songliao basin, Sandstone-type uranium deposit, Sifangtai Formation  
  Abstract The sandstone-hosted uranium mineralization areas in the Sanzhao Sag of the northern Songliao Basin have been newly identified. The target stratum is the Upper Cretaceous Sifangtai Formation and the uranium mineralization mainly occurs in the bottom of Sifangtai Formation, corresponding to channel sand bodies in meandering river system, characterized by medium to fine-grained sandstone. This study proposes the uranium metallogenic model through petrographic observation, whole rock geochemistry, mineralogical study of uranium occurrence form (SEM), organic matter rock–eval pyrolysis analysis (REP) and in-situ sulfur isotope determination of different generations of pyrite by LA-MC-ICP-MS. Compared with the sandstones collected in barren reduction and oxidization zones, the mineralized sandstones show obvious increase in the contents of TOC, total sulfur, Y and U. Petrographic observations indicate that organic matters are mainly inherited from land plants. REP data display that the organic matter (OM) disseminated in the sandstone has very low hydrogen index (HI) from around 0 to 21 mg HC/g TOC and varied oxygen index (OI) from 44 to 115 mg CO2/g TOC, corresponding to Type Ⅳ kerogen (degraded kerogen). There are two types of coffinite with different grain size, micro-particles (μm-sized) and large aggregates (generally up to 100 μm) respectively. The coffinite micro spherules exhibit short rod-like or worm-like morphology occurring in clay matrix and cell cavities in degradofusinite or around subidiomorphic-idiomorphic pyrite. The coarse-grained coffinite contains other mineral facies (e.g. pyrite, quartz) and some of large coffinite aggregates display thrombolite-type microbial structures. The irregular pyrite relict particles in coarse-grained colloidal coffinite have light sulfur isotope compositions characterized by δ34S values from –39.96‰ to –49.89‰. The δ34S values of colloidal pyrite in replacement of OM or of the sub-idiomorphic FeS2 cement filling in the cavities of OM range from –52.77‰ to –13.88‰. Some of sub-idiomorphic pyrite cement and idiomorphic crystal have the heavier signature from – 27.06‰ to + 14.23‰. The light sulfur isotope signature suggests that the sulfur originates from bacterial sulfate reduction (BSR). The OM replacement by pyrite and the highest OI values recorded by REP in uranium mineralized samples are lines of evidence of biodegradation. Bacteria use the organic matter as food source and produce isotopically light reduced sulfur species. Oxygenated uranium-bearing waters infiltrated through the denudated windows at Daqing placanticline into the porous reduced sandstones deposited in the Sanzhao Sag. Uranium was indirectly reduced by BSR-derived iron disulfides or directly reduced by sulfate-reducing bacteria.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ren_mineralogical_2022 Serial 144  
Permanent link to this record
 

 
Author Min, M.; Chen, J.; Wang, J.; Wei, G.; Fayek, M. url  openurl
  Title (down) Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China Type Journal Article
  Year 2005 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 26 Issue 1 Pages 51-69  
  Keywords China, Mineralogy, Paragenesis, Sandstone-hosted roll-type uranium deposit  
  Abstract We present a first paragenetic study of the Wuyier, Wuyisan, Wuyiyi and Shihongtan sandstone-hosted roll-front uranium deposits, northwest China. The mineralization is hosted by Lower–Middle Jurassic coarse- to medium-grained sandstones, which are dark-gray to black due to a mixture of ore minerals and carbonaceous debris. The sandstone is alluvial fan-braided river facies. Minerals associated with these deposits can be broadly categorized as detrital, authigenic, and ore-stage mineralization. Ore minerals consist of uraninite and coffinite. This is the first noted occurrence of coffinite in this type of deposit in China. Sulfide minerals associated with the uranium minerals are pyrite, marcasite, and less commonly, sphalerite and galena. The sulfide minerals are largely in textural equilibrium with the uranium minerals. However, these sulfide minerals occasionally appear to predate, as well as postdate, the uranium minerals. This implies that there are multiple generations of sulfides associated with these deposits. The ore minerals occur interstitially between fossilized wood cells in the sandstones as well as replace fossilized wood and biotite. The deposits are generally low-grade. Primary uranium minerals associated with the low-grade deposits are generally too small, ranging from 0.2 to 0.3 μm in diameter, to be observed by optical microscopy and are only observed by electron microscopy. Mineral paragenesis and textures indicate that these deposits formed under low temperature (30–50 °C) conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ min_mineral_2005 Serial 175  
Permanent link to this record
 

 
Author Zagana, E.; Külls, C.; Udluft, P.; Constantinou, C. url  doi
openurl 
  Title (down) Methods of groundwater recharge estimation in eastern Mediterranean water balance model application in Greece, Cyprus and Jordan Type Journal Article
  Year 2007 Publication Hydrological Processes: An International Journal Abbreviated Journal  
  Volume 21 Issue 18 Pages 2405-2414  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher John Wiley & Sons, Ltd. Chichester, UK Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Zagana2007methods Serial 30  
Permanent link to this record
 

 
Author Sahoo, P.K.; Virk, H.S.; Powell, M.A.; Kumar, R.; Pattanaik, J.K.; Salomão, G.N.; Mittal, S.; Chouhan, L.; Nandabalan, Y.K.; Tiwari, R.P. url  openurl
  Title (down) Meta-analysis of uranium contamination in groundwater of the alluvial plains of Punjab, northwest India: Status, health risk, and hydrogeochemical processes Type Journal Article
  Year 2022 Publication Science of The Total Environment Abbreviated Journal  
  Volume 807 Issue Pages 151753  
  Keywords Agrochemicals, Geogenic contamination, Punjab, Salinity, Shallow aquifer, Uranium enrichment  
  Abstract Despite numerous studies, there are many knowledge gaps in our understanding of uranium (U) contamination in the alluvial aquifers of Punjab, India. In this study, a large hydrogeochemical dataset was compiled to better understand the major factors controlling the mobility and enrichment of uranium (U) in this groundwater system. The results showed that shallow groundwaters (\textless60 m) are more contaminated with U than from deeper depths (\textgreater60 m). This effect was predominant in the Southwest districts of the Malwa, facing significant risk due to chemical toxicity of U. Groundwaters are mostly oxidizing and alkaline (median pH: 7.25 to 7.33) in nature. Spearman correlation analysis showed that U concentrations are more closely related to total dissolved solids (TDS), salinity, Na, K, HCO3−, NO3− Cl−, and F− in shallow water than deep water, but TDS and salinity remained highly correlated (U-TDS: ρ = 0.5 to 0.6; U-salinity: ρ = 0.5). This correlation suggests that the salt effect due to high competition between ions is the principal cause of U mobilization. This effect is evident when the U level increased with increasing mixed water species (Na-Cl, Mg-Cl, and Na-HCO3). Speciation data showed that the most dominant U species are Ca2UO2(CO3)2− and CaUO2(CO3)3−, which are responsible for the U mobility. Based on the field parameters, TDS along with pH and oxidation-reduction potential (ORP) were better fitted to U concentration above the WHO guideline value (30 μg.L−1), thus this combination could be used as a quick indicator of U contamination. The strong positive correlation of U with F− (ρ = 0.5) in shallow waters indicates that their primary source is geogenic, while anthropogenic factors such as canal irrigation, groundwater table decline, and use of agrochemicals (mainly nitrate fertilizers) as well as climate-related factors i.e., high evaporation under arid/semi-arid climatic conditions, which result in higher redox and TDS/salinity levels, may greatly affect enrichment of U. The geochemical rationale of this study will provide Science-based-policy implications for U health risk assessment in this region and further extrapolate these findings to other arid/semi-arid areas worldwide.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ sahoo_meta-analysis_2022 Serial 150  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: