|   | 
Details
   web
Records
Author Marteleto, T. de P.; Abreu, A.E.S. de; Barbosa, M.B.; Yoshinaga-Pereira, S.; Bertolo, R.A.; Enzweiler, J.
Title (up) Groundwater apparent ages and isotopic composition in Crystalline, Diabase and Tubarão aquifers contact area in Campinas, Southeastern Brazil Type Journal Article
Year 2024 Publication Journal of South American Earth Sciences Abbreviated Journal
Volume 135 Issue Pages 104783
Keywords Fractured aquifer, Groundwater mixing, Isotopes, Water management
Abstract This study refines the hydrogeological conceptual model of an area with three interconnected aquifers, namely the Crystalline Aquifer System (CAS – igneous and metamorphic rocks), which is in contact with the Tubarão Aquifer System (TAS – sedimentary rocks) and the Diabase Aquifer System (DAS – diabase rocks). The detailed investigation involved geophysical logging and hydraulic and hydrodynamic characterization with straddle packers in a local tubular well, in which groundwater presents high uranium concentrations. Hydrogeochemical and isotope (δ2H, δ18O, 3H, δ13C, 14C) analysis in this well and in other three neighboring wells, with lower U concentrations, showed that ancient and modern waters (3H from <0.8 to 1.12 TU, 14C from 69.43 to 78.72 pMC) mix within the aquifer. During groundwater pumping, vertical fractures in the diabase aquifer possibly induce water mixing and recharge of the deeper levels of the aquifers from shallow layers. The high [U] are related to ancient waters from a confined aquifer hosted in CAS that reaches the wells through hydraulically active fractures located deeper than 159 m depth. Groundwater apparent ages do not increase systematically with depth, revealing a complex circulation model for CAS. The results obtained from the other wells, which are all located on drainage lineaments, reveal that one extracts modern water from DAS and TAS, another one extracts modern and ancient water from DAS and CAS, and the third extracts only ancient water from CAS, confirming the complexity of the local hydrogeology. Regarding regional groundwater management, the study revealed the need to characterize the sources of groundwater in each well, in order to protect modern waters from anthropogenic contamination and to protect ancient groundwater from overexploitation, as CAS hosts groundwaters recharged thousands of years ago or more.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0895-9811 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Depaulamarteleto2024104783 Serial 221
Permanent link to this record
 

 
Author Gil-Márquez, J.M.; Sültenfuß, J.; Andreo, B.; Mudarra, M.
Title (up) Groundwater dating tools (3H, 3He, 4He, CFC-12, SF6) coupled with hydrochemistry to evaluate the hydrogeological functioning of complex evaporite-karst settings Type Journal Article
Year 2020 Publication Journal of Hydrology Abbreviated Journal
Volume 580 Issue Pages 124263
Keywords Groundwater dating, Evaporite karst, Brine spring, Free-shape models
Abstract The hydrogeological functioning of four different areas in a complex evaporite-karst unit of predominantly aquitard behavior in S Spain was investigated. Environmental dating tracers (3H, 3He, 4He, CFC-12, SF6) and hydrochemical data were determined from spring samples to identify and characterize groundwater flow components of different residence times in the media. Results show a general geochemical evolution pattern, from higher (recharge areas) to lower positions (discharge areas), in which mineralization rises as well as the value of the rCl−/SO42−, evidencing longer water-rock interaction. Ne values show degassing of most of the samples, favored by the high salinity of groundwater and the development of karstification so that the concentration of all the considered gases were corrected according to the difference between the theoretical and the measured Ne. The presence of modern groundwater in every sample was proved by the detection of 3H and CFC-12. At the opposite, the higher amount of radiogenic 4He in most samples also indicates that they have an old component. The 3H/3He dating method does not give reliable ages as a consequence of degassing and the large uncertainty of the 3He/4He ratios of the sources for the radiogenic Helium. The large SF6 concentrations suggest terrigenic production related to halite and dolomite. Binary Mixing and Free Shape Models were created based on 3H and CFC-12 data to interpret the age distribution of the samples. Two parameters (GA50 and >70%) were proposed as an indicator of that distribution, as they provide further information than the mean age. Particularly, GA50 is derived from the median groundwater age and is presented as a new way of interpreting mixed groundwater age data. A greater fraction of old groundwater (3H and CFC-12 free) was identified in discharge areas, while the proportion and estimated infiltration date of the younger fractions in recharge areas were higher and more recent, respectively. The application of different approaches has been useful to corroborate previous theoretical conceptual model proposed for the study area and to test the applicability of the used environmental tracer in dating brine groundwater and karst springs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Gilmarquez2020124263 Serial 213
Permanent link to this record
 

 
Author Heine, F.; Einsiedl, F.
Title (up) Groundwater dating with dissolved organic radiocarbon: A promising approach in carbonate aquifers Type Journal Article
Year 2021 Publication Applied Geochemistry Abbreviated Journal
Volume 125 Issue Pages 104827
Keywords C groundwater dating, deep carbonate aquifer, DOC, SPE-PPL
Abstract A complete hydrogeological understanding of the deep Upper Jurassic carbonate aquifer in the South German Molasse Basin is essential for the future development of this important drinking water resource and geothermally used system. Water chemistry data, δ13CDIC, 14C of the dissolved inorganic carbon (14CDIC) and stable water isotope (δ18O and δD) measurements have been used to evaluate a promising groundwater dating approach with 14C of dissolved organic carbon (14CDOC). The pre-concentration of dissolved organic matter (DOM) was performed by the easy applicable solid phase extraction (SPE) with a styrene-divinylbenzene copolymer sorbent (PPL). Based on the sampling campaign of seven groundwater wells conducted between 2017 and 2019, it was shown that the groundwater is mainly of Ca–HCO3 type with some evidence of ion exchange between Ca2+ and Na+ at two of the investigated wells. The δD values ranged from −89.4‰ to −70.9‰ while δ18O values varied between −12.5‰ and −9.8‰. The obtained stable water isotope signatures indicated that the groundwater is of meteoric origin and was recharged during warm climate (Holocene), intermediate climate and cold climate (Pleistocene) infiltration conditions. The measured 14CDOC activities varied from 5.7 pmC to 51.1 pmC and the calculated piston-flow water ages (ORAs) ranged from 4200 years to 25,248 years using an initial 14C0DOC of 85 pmC. The calculated ORAs showed a very good correlation to the infiltration temperature-sensitive δ18O values which were affirmed with noble gas infiltration temperatures for two wells after Weise et al. (1991) and were also in good accordance with the atmospheric temperature record of the northern hemisphere from Dokken et al. (2015). The results reflect a consistent hydrogeological picture of the carbonate aquifer, which also supports the applicability of the SPE-PPL method for 14CDOC dating in groundwater with a low DOC content (<1 mg/l). In contrast, 14CDIC activities of 1.4 pmC to 21.3 pmC led to geochemically corrected piston-flow ages between 8057 years and >30,000 years and generally to an overestimation of the apparent water ages. This study gives insights into the promising approach of 14CDOC groundwater dating in carbonate aquifers with low DOC contents and allows future sustainable groundwater resource management of the investigated aquifer system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Heine2021104827 Serial 216
Permanent link to this record
 

 
Author Aderemi, B.A.; Olwal, T.O.; Ndambuki, J.M.; Rwanga, S.S.
Title (up) Groundwater levels forecasting using machine learning models: A case study of the groundwater region 10 at Karst Belt, South Africa Type Journal Article
Year 2023 Publication Systems and Soft Computing Abbreviated Journal
Volume 5 Issue Pages 200049
Keywords Artificial intelligence, Forecasting model, Groundwater levels, Machine learning, Neural networks, Rainfall, Regression, Temperature, Time series
Abstract The crucial role which groundwater resource plays in our environment and the overall well-being of all living things can not be underestimated. Nonetheless, mismanagement of resources, over-exploitation, inadequate supply of surface water and pollution have led to severe drought and an overall drop in groundwater resources’ levels over the past decades. To address this, a groundwater flow model and several mathematical data-driven models have been developed for forecasting groundwater levels. However, there is a problem of unavailability and scarcity of the on-site input data needed by the data-driven models to forecast the groundwater level. Furthermore, as a result of the dynamics and stochastic characteristics of groundwater, there is a need for an appropriate, accurate and reliable forecasting model to solve these challenges. Over the years, the broad application of Machine Learning (ML) and Artificial Intelligence (AI) models are gaining attraction as an alternative solution for forecasting groundwater levels. Against this background, this article provides an overview of forecasting methods for predicting groundwater levels. Also, this article uses ML models such as Regressions Models, Deep Auto-Regressive models, and Nonlinear Autoregressive Neural Networks with External Input (NARX) to forecast groundwater levels using the groundwater region 10 at Karst belt in South Africa as a case study. This was done using Python Mx. Version 1.9.1., and MATLAB R2022a machine learning toolboxes. Moreover, the Coefficient of Determination (R2);, Root Mean Square Error (RMSE), Mutual Information gain, Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and the Mean Absolute Scaled Error (MASE)) models were the forecasting statistical performance metrics used to assess the predictive performance of these models. The results obtained showed that NARX and Support Vector Machine (SVM) have higher performance metrics and accuracy compared to other models used in this study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2772-9419 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Aderemi2023200049 Serial 219
Permanent link to this record
 

 
Author Külls, C.
Title (up) Groundwater of the North-Western Kalahari, Namibia: estimation of recharge and quantification of the flow system Type Book Whole
Year 2001 Publication Hydrogeologie und Umwelt Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis Doctoral thesis
Publisher Hydrogeologie und Umwelt Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Kuells2003groundwater Serial 38
Permanent link to this record
 

 
Author Patel, D.; Pamidimukkala, P.; Chakraborty, D.
Title (up) Groundwater quality evaluation of Narmada district, Gujarat using principal component analysis Type Journal Article
Year 2024 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 24 Issue Pages 101050
Keywords Fluoride, Groundwater quality index, Principal component analysis, Uranium
Abstract In the present study, the ground water quality parameters were monitored during pre- and post-monsoon seasons across Narmada district, Gujarat, India. Monitoring was done in 89 drinking water samples collected by grid sampling method from the study area. Uranium and fluoride were analyzed along with associated parameters such as pH, dissolved oxygen, Cl−, NO3−, F−, SO42−, total alkalinity, total dissolved solids and hardness. In 4% samples the fluoride content was found to be above WHO permissible limits of 1.5 mg/L (2.36 mg/L in Undaimandava, 1.55 mg/L in Shira, 3.04 mg/L in Fatehpur and 1.83 mg/L in Dholivav) during pre-monsoon season (PRM) and 4.74 mg/L, 2.41 mg/L, 2.34 mg/L and 3.99 mg/L respectively in Bantawadi, Shira, Undai Mandava and Fatepur villages during post-monsoon (POM). The uranium level was within WHO limits in both POM and PRM seasons. The quality of the water was evaluated by Principal Component and Pearson Correlation statistical analysis techniques. The PRM and POM correlation study indicated a strong correlation of TDS with EC, Chloride, total alkalinity and bicarbonate and U while moderately strong correlation of TDS with fluoride were observed indicating that chloride, total alkalinity, bicarbonate, U and fluoride contributed to TDS and EC. Principal component analysis was applied for 14 variables, from which 3 factors were extracted during PRM and POM seasons. The extracted components, contributed 84.391% and 83.315%, to variation during PRM and POM seasons respectively. The study indicated that the analyzed water samples in Narmada district were safe for drinking purpose. However, Tilakwada tehsil groundwater was observed to be unsustainable for drinking, without further water treatment, but was appropriate for agricultural purposes. The study will help the residents of the district to understand the present water quality status and will also help in future management to protect the ground water of Narmada district.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ patel_groundwater_2024 Serial 148
Permanent link to this record
 

 
Author Krüger, N.; Külls, C.; Bruggeman, A.; Eliades, M.; Christophi, C.; Rigas, M.; Eracleous, T.
Title (up) Groundwater recharge estimates with soil isotope profiles-is there a bias on coarse-grained hillslopes? Type Conference Article
Year 2020 Publication EGU General Assembly Conference Abstracts Abbreviated Journal
Volume Issue Pages 9840
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Krueger2020groundwater Serial 42
Permanent link to this record
 

 
Author Ruiz, O.; Thomson, B.; Cerrato, J.M.; Rodriguez-Freire, L.
Title (up) Groundwater restoration following in-situ recovery (ISR) mining of uranium Type Journal Article
Year 2019 Publication Applied Geochemistry Abbreviated Journal
Volume 109 Issue Pages 104418
Keywords Aquifer stabilization, Ground water restoration, In-situ leach mining, In-situ recovery, Uranium
Abstract From 1950 through the early 1980’s New Mexico accounted for roughly half of domestic uranium (U) production for the nuclear power industry and the nation’s weapon programs. Increased interest in nuclear energy has led to proposals for renewed development using both underground mining and uranium in situ recovery (ISR). When feasible, ISR greatly reduces waste generated by the mining and milling processes, however, the ability to restore ground water to acceptable quality after ISR ends is uncertain. This research investigated two methods of stabilizing an aquifer following ISR. Batch and column studies were performed to evaluate chemical and biological methods of stabilization. Columns packed with ore were first leached with an aerated NaHCO3 ground water solution to simulate ISR. Constituents present at elevated concentrations after leaching included molybdenum (Mo), selenium (Se), U, and vanadium (V). Chemical stabilization was studied by passing a phosphate (PO43-) amended solution through the ore to achieve passivation of mineral surfaces by P precipitates. Microbial stabilization was studied by passing a lactate solution through the ore to stimulate growth of anaerobic metal- and sulfate-reducing organisms to reduce U and other elements to less soluble phases. Analyses of the solids from the columns after completion of these experiments by X-ray photo electron spectroscopy (XPS) identified phosphate on samples near the column inlet of the chemically stabilized columns. Microbial populations were characterized by Illumina DNA sequencing and confirmed the presence of metal- and sulfate-reducing organisms. Neither chemical nor microbial stabilization method achieved contaminant immobilization, which is believed due to limited mixing of the stabilization solutions with the contaminated leach solutions. These results emphasize that ground water hydrodynamics, especially mixing, must be considered in aquifer restoration of soluble constituents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ruiz_groundwater_2019 Serial 153
Permanent link to this record
 

 
Author Tisherman, R.A.; Rossi, R.J.; Shonkoff, S.B.C.; DiGiulio, D.C.
Title (up) Groundwater uranium contamination from produced water disposal to unlined ponds in the San Joaquin Valley Type Journal Article
Year 2023 Publication Science of The Total Environment Abbreviated Journal
Volume 904 Issue Pages 166937
Keywords Groundwater, Oil & gas, Produced water, San Joaquin Valley, Uranium
Abstract In the southern San Joaquin Valley (SJV) of California, an agriculturally productive region that relies on groundwater for irrigation and domestic water supply, the infiltration of produced water from oil reservoirs is known to impact groundwater due to percolation from unlined disposal ponds. However, previously documented impacts almost exclusively focus on salinity, while contaminant loadings commonly associated with produced water (e.g., radionuclides) are poorly constrained. For example, the infiltration of bicarbonate-rich produced waters can react with sediment-bound uranium (U), leading to U mobilization and subsequent transport to nearby groundwater. Specifically, produced water infiltration poses a particular concern for SJV groundwater, as valley-fill sediments are well documented to be enriched in geogenic, reduced U. Here, we analyzed monitoring well data from two SJV produced water pond facilities to characterize U mobilization and subsequent groundwater contamination. Groundwater wells installed within 2 km of the facilities contained produced water and elevated levels of uranium. There are \textgreater400 produced water disposal pond facilities in the southern SJV. If our observations occur at even a fraction of these facilities, there is the potential for widespread U contamination in the groundwaters of one of the most productive agricultural regions in the world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ tisherman_groundwater_2023 Serial 159
Permanent link to this record
 

 
Author Külls, C.; Schwarz, O.
Title (up) Grundwasseranreicherung in den Waldbeständen der Teninger Allmend bei Freiburg im Breisgau Type Book Chapter
Year 2000 Publication Beiträge zur Physischen Geographie Abbreviated Journal
Volume Issue Pages 67 - 78
Keywords
Abstract
Address
Corporate Author Fachbereich Geowissenschaften der Johann Wolfgang Goethe-Universität Frankfurt am Main Thesis
Publisher Werner-F. Bär Place of Publication Frankfurt am Main Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Serial 72
Permanent link to this record