|   | 
Details
   web
Records
Author Zhang, H.; Gao, J.; Xu, L.; Zhang, X.
Title (up) Case studies of radioactivity of drilling mud for in situ leaching uranium mining in China Type Journal Article
Year 2022 Publication Journal of Environmental Radioactivity Abbreviated Journal
Volume 251-252 Issue Pages 106982
Keywords Drilling mud, Exemption management, In situ leaching, Radioactivity
Abstract The drilling mud from in situ leaching uranium mining is a type of low-radioactivity waste that contains natural nuclides and other harmful substances. In order to determine whether the drilling mud can meet the requirements of radioactive exemption management standards, field investigations and data simulations were conducted in this study. Two typical uranium mines were selected for onsite investigations. Drilling mud from different layers (i.e., the upper covering layer and ore-bearing layer) and from different stages (e.g., logging stage mud, drilling expansion stage mud, and mixed mud) was sampled. For each sample, the 238U and 226Ra concentrations of the solid components and the U and 226Ra concentrations of the supernatant were analyzed. The results revealed that the highest 238U and 226Ra concentrations of the solid components were 4122 Bq/kg and 4077 Bq/kg, while the 238U and 226Ra concentrations of the mixed drilling mud were all less than 300 Bq/kg. A radioactivity estimation model was established for scenario analysis. Exemption management screening lines of waste drilling mud, which can be used to classify and treat the drilling project according to the deposit’s grade and conditions, were proposed for in situ leaching drilling projects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0265-931x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ zhang_case_2022 Serial 191
Permanent link to this record
 

 
Author Stone, A.E.C.; Thomas, D.S.G.
Title (up) Casting new light on late Quaternary environmental and palaeohydrological change in the Namib Desert: A review of the application of optically stimulated luminescence in the region Type Journal Article
Year 2013 Publication Journal of Arid Environments Abbreviated Journal
Volume 93 Issue Pages 40-58
Keywords Namib Desert, Optically stimulated luminescence dating, Palaeoenvironment, Palaeohydrology, Quaternary, Southern Africa
Abstract The application of optically stimulated luminescence (OSL) dating in the Namib Desert is casting new light on late Quaternary environments. OSL has been applied to: (i) complex linear dunes, alongside ground penetrating radar stratigraphy in order to establish dune migration rates, (ii) fluvial lithofacies associations that distinguish between flood deposits and river end points, in order to constrain the timing of periods of higher discharge and conditions relatively drier than present and (iii) aeolian sand interbedded with carbonate deposits in order to provide chronologies for water-lain interdune sediments. We present and review the contribution of these data to enhancing reconstructions of the palaeoenvironments and palaeohydrology of the west coast of Namibia, particularly the increased confidence in interpretations provided by lithofacies analysis of the river deposits. This includes major silt deposits, which have had a contested palaeohydrological interpretation, such as the Kuiseb River Homeb Silts. We conclude that OSL should remain a key chronological technique to further elucidate the palaeoenvironmental history of southern Africa.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-1963 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ stone_casting_2013 Serial 98
Permanent link to this record
 

 
Author Li, J.; Pang, Z.; Liu, Y.; Hu, S.; Jiang, W.; Tian, L.; Yang, G.; Jiang, Y.; Jiao, X.; Tian, J.
Title (up) Changes in groundwater dynamics and geochemical evolution induced by drainage reorganization: Evidence from 81Kr and 36Cl dating of geothermal water in the Weihe Basin of China Type Journal Article
Year 2023 Publication Earth and Planetary Science Letters Abbreviated Journal
Volume 623 Issue Pages 118425
Keywords Kr dating, Cl dating, Geothermal water, Groundwater dynamics, Weihe basin
Abstract 81Kr and 36Cl can both be used to date groundwater beyond the dating range of 14C. 81Kr usually provides reliable groundwater ages because it has uniform initial distribution and negligible subsurface generation, while 36Cl is commonly influenced by subsurface sources or “dead” chloride dissolution. Therefore, the combined use of 81Kr and 36Cl could provide clues on the evolution history of groundwater. In the present study, we performed 36Cl and 81Kr dating of geothermal water in Weihe Basin of China and interpreted the possible cause of disagreement. Two distinct water masses were identified with distinctive isotopic signals: groundwater with significant δ18O shifts (up to −2.0‰), dissolved dead Cl and ages < 1.0 Ma (Cluster A), and older water with little δ18O shifts, negligible dissolved Cl and ages >1.0 Ma (Cluster B). The results confirm the eastward flow path of Cluster B to the Ancient Sanmen Lake with an increasing trend of Cl concentration and age. Modern recharge from the mountains flows to the basin center with intense interaction between water and carbonate under respective reservoir temperatures (100 ∼ 130 °C). These waters flow through the saline stratum emerging from the spillover of the Ancient Sanmen Lake, resulting in higher dead Cl dissolution. A significant linear relationship is observed with the older end-member of ∼1.3Ma under the topographically-driven faster circulation effect. 81Kr ages seem to support the hypothesis that the birth of the modern Yellow River was at about 1.0–1.3 Ma. We inferred the drainage reorganization from the Ancient Sanmen Lake to the modern Yellow River since the Mid-Pleistocene Transition induced the change in groundwater dynamics as well as its chemical evolution. The excavation of the Ancient Sanmen Lake and the accentuated incision of the Weihe River induced groundwater gradient, and therefore the recharge from precipitation from both slopes of the Qinling Mountains in the south and the Beishan Mountains in the north. Our results highlight the effects of dead Cl on 36Cl dating and demonstrate the significant impact of catchment reorganization on groundwater dynamics and its chemistry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0012-821x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Li2023118425 Serial 212
Permanent link to this record
 

 
Author Külls, C.; Leibundgut, C.; Schwarz, U.; Schick, A.P.
Title (up) Channel infiltration study using dye tracers Type Journal Article
Year 1995 Publication IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences Abbreviated Journal
Volume 232 Issue Pages 429-436
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Wallingford [Oxfordshire]: IAHS, 1981- Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Kuells1995channel Serial 36
Permanent link to this record
 

 
Author Pisa, P.F.; Nehren, U.; Sebesvari, Z.; Rai, S.; Wong, I.
Title (up) Chapter 17 – Nature-based solutions to reduce risks and build resilience in mountain regions Type Book Chapter
Year 2024 Publication Safeguarding Mountain Social-Ecological Systems Abbreviated Journal
Volume Issue Pages 115-126
Keywords Nature-based solutions, mountains, climate change adaptation, disaster risk reduction, ecosystem services, SDGs
Abstract Nature-based solutions (NbS) are increasingly recognized as effective environmental-management measures to address societal challenges such as climate change, water and food security, and disaster risk reduction, thus contributing to human well-being and protecting biodiversity. In addition to being particularly susceptible to these challenges, mountain areas are prone to multihazard conditions, due to their steep topography and particular climatic conditions. NbS can contribute greatly to the sustainable development of mountain ecosystems. This chapter presents examples of NbS in mountain areas around the globe that demonstrate how this approach contributes to achieving sustainable development.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor Schneiderbauer, S.; Pisa, P.F.; Shroder, J.F.; Szarzynski, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-12-822095-5 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Fontanellapisa2024115 Serial 263
Permanent link to this record