toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Boulesteix, T.; Cathelineau, M.; Deloule, E.; Brouand, M.; Toubon, H.; Lach, P.; Fiet, N. url  openurl
  Title (up) Ilmenites and their alteration products, sinkholes for uranium and radium in roll-front deposits after the example of South Tortkuduk (Kazakhstan) Type Journal Article
  Year 2019 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 206 Issue Pages 106343  
  Keywords  
  Abstract The approximate determination of average Ra/U disequilibria in orebodies is one of the most common causes of errors in U reserve estimations. In roll-front deposits, the disequilibria are however frequently distributed following complex geometries, which must be fully understood to prevent major U reserve overestimates and costly unproductive extractive operations. The processes responsible for disruption of the radioactive equilibria and the U and Ra carriers in such complex natural systems remain poorly constrained. In this contribution, we propose an innovative approach, mixing orebody to sub-grain scale studies to unravel the distribution of U and Ra and the processes responsible for their concentration and uncoupling. Using mineral separations, gamma spectrometry and mineral-chemical analyses, we identified the Fe-Ti clusters (altered ilmenite + pyrite/marcasite) as the microsites for coffinite precipitation and Ra concentration. To understand the influence of such clusters on the distribution of U and Ra at the deposit scale, whole-rock Ra/U disequilibria were measured and mapped at a series of ten drill holes along a profile crosscutting the studied roll-front. The main Ra/U disequilibria are encountered around the mineralization in low U content zones. They are controlled by two main processes. (1) In the oxidized zones, the immobility of 230Th with respect to the U produces patches of Ra disequilibria (carried by the altered U minerals). (2) In the immediate vicinity of the roll-front, the dissolution of the mineralization produces an Ra flux trapped by the alteration products of ilmenites, as definitely confirmed by direct SIMS measurements. Such a process is responsible for the Ra disequilibria envelope located downstream of the richest ores, also known as Ra halo. The highest Ra/U ratios correspond to oxidized upstream samples, but most other high Ra/U ratios are from reduced downstream samples close to the mineralization. Such a low to medium U content envelope with high Ra/U ratios constitutes the main cause of U reserve overestimations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ boulesteix_ilmenites_2019 Serial 181  
Permanent link to this record
 

 
Author Alexander, A.C.; Ndambuki, J.M. url  openurl
  Title (up) Impact of mine closure on groundwater resource: Experience from Westrand Basin-South Africa Type Journal Article
  Year 2023 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume 131 Issue Pages 103432  
  Keywords Acid mine drainage, Groundwater quality, Mine closure, Spatio-temporal variation, Westrand Basin  
  Abstract The mining sector is at the edge of expanding to cater for natural resources that are much needed for technological development and manufacturing. Mushrooming of mines will consequently increase the number of mines closure. Moreover, mines closure have adverse impact on the environment at large and specifically on water resources. This study analyses historical groundwater quality parameters in mine intensive basin of Westrand Basin (WRB) to understand the status of groundwater quality in relation to mining activities and mine closure. Geographic information system (GIS) was used to map the spatio-temporal variation of groundwater quality in the basin and groundwater quality index (GQI) to evaluate its status. The coefficient of variation (CV) was applied to understand the stability of groundwater quality after the mine closure. Results indicated unstable and altered trend with increasing levels of acidity and salts concentration around the mines vicinity following the mine closure. The resultant maps indicated a significant deterioration of groundwater quality around the WRB with concentrations decreasing downstream. Obtained average GQI for the study period of 1996–2015 suggested a moderate groundwater quality at a range of GQI = 64–73. The CV indicated varying water quality at CV \textgreater 30% suggesting presence of source of contamination. Observed groundwater quality trends in Westrand basin suggested that mines closure present potential threat on groundwater quality and thus, a need for a robust mine closure plan and implementation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ alexander_impact_2023 Serial 134  
Permanent link to this record
 

 
Author Custódio, D.A.; Ghisi, E. url  openurl
  Title (up) Impact of residential rainwater harvesting on stormwater runoff Type Journal Article
  Year 2023 Publication Journal of Environmental Management Abbreviated Journal  
  Volume 326 Issue Pages 116814  
  Keywords Rainwater harvesting, Residential buildings, Stormwater runoff, Floods, Computer simulation  
  Abstract Population increase, climate change and soil impermeability are factors causing floods in large urban centres. Such places also always have water shortage problems. This research aims to evaluate the influence of rainwater harvesting in residential buildings on stormwater in a basin located in southern Brazil (Rio Cachoeira Basin). Urbanised and non-urbanised areas, soil types, curve numbers and time of concentration of each sub-basin were taken into account. Through the HEC-HMS programme, it was possible to calculate hydrographs for the base scenario (when there is no rainwater harvesting). Then, rainwater tanks for the residential buildings were sized using the computer programme Netuno. In the second scenario, there is rainwater harvesting in all residential buildings. Thus, the hydrographs for the second scenario were also calculated. The peak flow reduction potentials for the sub-basins ranged from 2.7% to 14.3%. The highest percentage (14.3%) did not occur in the sub-basin with the most extensive roof area; such highest peak flow reduction occurred in Bom Retiro sub-basin. In Bom Retiro sub-basin, there are more houses than multi-storey residential buildings. Even when considering the full potential of rainwater harvesting for roof areas of all existing buildings in the Rio Cachoeira Basin, the average potential reduction in peak flow was 7.2%. The conclusion is that rainwater tanks in residential buildings have little influence on stormwater runoff, and the stormwater runoff will be less affected when the area of the hydrographic basin is larger. Thus, the reduction in peak flows is insignificant when considering the flooding in the region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Custodio2023116814 Serial 231  
Permanent link to this record
 

 
Author de Jong, I.J.H.; Arif, S.S.; Gollapalli, P.K.R.; Neelam, P.; Nofal, E.R.; Reddy, K.Y.; Röttcher, K.; Zohrabi, N. url  openurl
  Title (up) Improving agricultural water productivity with a focus on rural transformation* Type Journal Article
  Year 2021 Publication Irrigation and Drainage Abbreviated Journal  
  Volume 70 Issue 3 Pages 458-469  
  Keywords irrigation efficiency, water productivity, rural transformation, efficacité de l’irrigation, productivité de l’eau, transformation rurale  
  Abstract ABSTRACT As a result of population growth, economic development and climate change, feeding the world and providing water security will require important changes in the technologies, institutions, policies and incentives that drive present-day water management, as captured in Goal 6.4 of the Millennium Development Goals. Irrigation is the largest and most inefficient water user, and there is an expectation that even small improvements in agricultural water productivity will improve water security. This paper argues that improvements in irrigation water productivity involves a complex and comprehensive rural transformation that goes beyond mere promotion of water saving technologies. Many of the measures to improve water productivity require significant changes in the production systems of farmers and in the support provided to them. Looking forward, water use and competition over water are expected to further increase. By 2025, about 1.8 billion people will be living in regions or countries with absolute water scarcity. Demand for water will rise exponentially, while supply becomes more erratic and uncertain, prompting the need for significant shifts of inter-sectoral water allocation to support continued economic growth. Advances in the use of remote sensing technologies will make it increasingly possible to cost-effectively and accurately estimate crop evapotranspiration from farmers’ fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ https://doi.org/10.1002/ird.2451 Serial 89  
Permanent link to this record
 

 
Author Uhrie, J.L.; Drever, J.I.; Colberg, P.J.S.; Nesbitt, C.C. url  openurl
  Title (up) In situ immobilization of heavy metals associated with uranium leach mines by bacterial sulfate reduction Type Journal Article
  Year 1996 Publication Hydrometallurgy Abbreviated Journal  
  Volume 43 Issue 1 Pages 231-239  
  Keywords  
  Abstract Laboratory experiments with mixed populations of sulfate-reducing bactreria were shown to mediate the removal of milligrams/liter concentrations of uranium, selenium, arsenic and vanadium from aqueous solution via reduction, precipitation and adsorption. Results of laboratory experiments with active sulfidogenic biomass suggest that injection of sulfate and a source of carbon could enhance anaerobic microbial activity in and around uranium leach mines leading to in situ immobilization contaminating metals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ uhrie_situ_1996 Serial 197  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: