toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Tamagnone, P.; Comino, E.; Rosso, M. url  openurl
  Title Rainwater harvesting techniques as an adaptation strategy for flood mitigation Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 586 Issue Pages 124880  
  Keywords Rainwater harvesting techniques, Extreme rainfall, Runoff, Hydraulic modelling, Flood mitigation, Arid and semi-arid climate  
  Abstract The development of adaptation and mitigation strategies to tackle anthropic and climate changes impacts is becoming a priority in drought-prone areas. This study examines the capabilities of indigenous rainwater harvesting techniques (RWHT) to be used as a viable solution for flood mitigation. The study analyses the hydraulic performance of the most used micro-catchment RWHT in sub-Saharan regions, in terms of flow peak reduction (FPR) and volume reduction (VR) at the field and basin scale. Parametrized hyetographs were built to replicate the extreme precipitations that strike Sahelian countries during rainy seasons. 2D hydrodynamic simulations showed that half-moons placed with a staggered configuration (S-HM) have the best performances in reducing runoff. At the field scale, S-HM showed a remarkable FPR of 77% and a VR of 70% in case of extreme rainfall. Instead at the basin scale, in which only 5% of the surface was treated, 13% and 8% respectively for FPR and VR were obtained. In addition, the reduction of the runoff coefficient (Rc) between the different configuration was analyzed. The study critically evaluates hydraulic performances of the different techniques and shows how pitting practices cannot guarantee high performance in case of extreme precipitations. These results will enrich the knowledge of the hydraulic behavior of RWHT; aspect marginally investigated in the scientific literature. Moreover, this study presents the first scientific application of HEC-RAS as a rainfall-runoff model. Despite some limitations, this model has the effective feature of using very high-resolution topography as input for hydraulic simulations. The results presented in this study should encourage stakeholders to upscale the use of RWHT in order to lessen the flood hazard and land degradation that oppresses arid and semi-arid areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Tamagnone2020124880 Serial 240  
Permanent link to this record
 

 
Author Naghedifar, S.M.; Ziaei, A.N.; Naghedifar, S.A.; Ansari, H. url  openurl
  Title A new model for simulation of collection and conveyance sections of Qanat Type Journal Article
  Year 2020 Publication Journal of Hydrology Abbreviated Journal  
  Volume 590 Issue Pages 125218  
  Keywords Richards’ equation, Saint-Venant equation, Numerical modeling, Qanat-aquifer system  
  Abstract In this paper, a new numerical model has been developed for simulation of Qanat-aquifer system. This model employs quasi-3D mixed-form of Richards’ equation and 1D fully-hydrodynamic form of Saint-Venant equations to simulate subsurface and overland flow, respectively. In order to handle non-orthogonal grids, subsurface flow module benefits from coordinate transformation technique. Using the above-mentioned governing equations, the presented model is able to simulate water flow inside both collection and conveyance sections of the gallery as well as dynamics of groundwater and vadose zone from impermeable bed rock to the soil-air interface. Since measured data corresponding to the hydraulics of Qanats is scarce, the overland and subsurface modules have been validated with analytical, numerical and experimental benchmarks in the literature. Subsequently, the model was employed to simulate ten different hypothetical aquifer-Qanat systems with different properties including the depth of groundwater aquifer, roughness of the gallery and saturated hydraulic conductivity of the gallery-aquifer boundary and the influence of each the parameters was monitored on the outflow rate at the appearance point of each Qanat. Furthermore, the advance of water inside two initially dry galleries were simulated at different time levels up to steady state. Eventually, the streamlines have been shown at the steady state for two Qanat-aquifer systems. Although, the presented study sheds light on some aspects of Qanat-aquifer hydraulics, the validation of the presented model with in-lab or on-field data remains ongoing for the future researches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Naghedifar2020125218 Serial 254  
Permanent link to this record
 

 
Author Sedghi, M.M.; Zhan, H. url  openurl
  Title On the discharge variation of a qanat in an alluvial fan aquifer Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume 610 Issue Pages 127922  
  Keywords Analytical solution, Wedge-shaped aquifer, Image well, Areal recharge  
  Abstract Qanat is a passive (unpumped) horizontal well (or a slant well with a very mild inclined angle) that is capable of extracting water from aquifers by gravity. Many qanats are constructed along the radius of the alluvial fan wedge-shaped aquifers. Analytical modeling of such a qanat-aquifer system provides great benefit for quickly screening different designs of qanats and accessing the performance of qanat discharge in the field. The previous analytical modeling of discharge of qanats, however, did not consider the wedge-shaped aquifers. Thus, the goal of this research is to obtain semi-analytical solutions of discharge variations of qanats in alluvial fan aquifers with nearby pumping wells, subjected to areal recharges due to rainfall. The uniform head boundary is considered inside the qanat (because of its enormous permeability in respect to the background aquifer). The influences of the aquifer lateral boundaries on discharge of qanat and its sensitivity to hydraulic and geometric parameters are explored. The influences of the lateral boundaries on the discharge of qanat due to areal recharge and nearby pumping wells discharge are also explored. The results of this study can be utilized for multiple purposes: 1) to predict the discharge of qanat in an alluvial fan aquifer and explore the influences of the areal recharge and nearby pumping well discharge; 2) to estimate the hydraulic parameters of the alluvial fan aquifer depleted by a qanat; 3) to determine the location of the nearby pumping well to minimize its influences on the discharge of a qanat; 4) to calculate the water budgets of aquifers depleted by qanats and pumping wells and replenished by areal recharge among other applications. This paper is an extension to the work presented by Sedghi and Zhan (2020) (which concerns an infinite unconfined aquifer) for an unconfined alluvial fan aquifer setting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Sedghi2022127922 Serial 267  
Permanent link to this record
 

 
Author Xu, W.D.; Burns, M.J.; Cherqui, F.; Duchesne, S.; Pelletier, G.; Fletcher, T.D. url  openurl
  Title Real-time controlled rainwater harvesting systems can improve the performance of stormwater networks Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume 614 Issue Pages 128503  
  Keywords Real-time control, Rainwater harvesting systems, Stormwater control measures, Flood mitigation, Source Control, Climate change  
  Abstract Real-Time Control (RTC) technology is increasingly applied in Rainwater Harvesting (RWH) systems to optimise their performance related to water supply and flood mitigation. However, most studies to date have focussed on testing the benefits at an individual site scale, leaving the potential benefits for downstream stormwater networks largely untested. In this study, we developed a methodology to predict how at-source RTC RWH systems influence the behaviour of a stormwater network. Simulation was enabled by coupling the drainage model in SWMM with an RTC RWH model coded using the R software. We modelled two different RTC strategies across a range of system settings (e.g. storage size for RWH and proportion of storage to which RTC is applied) under two different climate scenarios—current and future climates. The simulations showed that RTC reduced flooding volume and peak flow of the stormwater network, leading to a potential mitigation of urban flooding risks, while also providing a decentralised supplementary water supply. Implementing RTC in more of RWH storages yielded greater benefits than simply increasing storage capacity, in both current and future climates. More importantly, the RTC systems are capable of more precisely managing the resultant flow regime in reducing the erosion and restoring the pre-development conditions in sensitive receiving waters. Our study suggests that RTC RWH storages distributed throughout a catchment can substantially improve the performance of existing drainage systems, potentially avoiding or deferring expensive network upgrades. Investments in real-time control technology would appear to be more promising than investments in detention volume alone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Xu2022128503 Serial 233  
Permanent link to this record
 

 
Author Rooyen, J.D. van; Watson, A.W.; Miller, J.A. url  openurl
  Title Using tritium and radiocarbon activities to constrain regional modern and fossil groundwater mixing in Southern Africa Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume 614 Issue Pages 128570  
  Keywords Radiocarbon, Residence time, SADC, Tritium  
  Abstract This study combines historical records of 14C and 3H in the atmosphere and soil with renewal rate and groundwater lumped parameter models to predict the abundance of 14C and 3H in groundwater over time. 624 groundwater samples from numerous studies, over four decades (1978–2019), in South Africa, Namibia, Botswana and Mozambique were collated to compare with predicted groundwater activities of 14C and 3H within the South African Development Community (SADC) region. Spatial datasets of carbonate bearing lithology, C3/C4 vegetation, summer/winter rainfall and coastal proximity were used to apply corrections to 14C and 3H data. Corrected values of 14C and 3H were compared with the theoretical abundance of these tracers, derived from the lumped parameter models, to estimate the general mean residence times and presence of groundwater mixing between modern recharge and older groundwaters. This study found that corrected values produced varying mean residence times derived from 14C ages (∼500–28500 years) and a wide range of potentially mixed waters within each aquifer system (0–100 % of tested wells) across the study area. The largest proportions of mixed groundwater, as well as the youngest mean residence times, were found in alluvial and primary fractured rock aquifers (e.g., western coast of South Africa and southern Mozambique). The smallest proportions of mixed groundwater were predicted in deep confined clay-rich aquifers as well as layered coal bearing carbonate sequences (e.g., Orapa, Malwewe and Serowe, Botswana). Insights into the proportions of mixed groundwater and mean residence times can help assess hydrological resilience on a regional scale. Such information is pertinent in promoting socio-economic development and increased water/food security in the SADC region. By understanding the resilience of groundwater resources, robust and informed strategies for water equality and GDP growth in the SADC region can be envisioned and implemented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ rooyen_using_2022 Serial 94  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: