toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Wang, B.; Luo, Y.; Liu, J.-hui; Li, X.; Zheng, Z.-hong; Chen, Q.-qian; Li, L.-yao; Wu, H.; Fan, Q.-ren url  openurl
  Title Ion migration in in-situ leaching (ISL) of uranium: Field trial and reactive transport modelling Type Journal Article
  Year 2022 Publication Journal of Hydrology Abbreviated Journal  
  Volume 615 Issue Pages 128634  
  Keywords Acid in situ leaching, Banyan-Uul uranium deposit, Influence area, Reactive transport, Sensitivity analysis  
  Abstract Acid in-situ leaching (ISL) can be used as a mining technique for in situ uranium recover from underground. Acids and oxidants as lixiviants were continuously injected into a sandstone-type uranium deposit in Bayan-Uul (China). It was conducted to facilitate the dissolution of uranium minerals to generate uranyl ions, which could then be extracted for the recovery of uranium resources by the pumping cycle. A reactive transport model based on PHAST was developed to investigate the dynamic reactive migration process of uranium. The simulated results well reproduce the fluid dynamic evolution in the injecting and pumping units, as well as the dynamic release of uranium. The simulated leaching area indicates that the uranium ore leaching area was much larger than the acidification area. In addition, the pollution plume of uranium and acid water was larger than that of the leaching area, which can be used as a reference for uranium mining schemes. Furthermore, the parameter sensitivity analysis indicates the volume fraction of uranium ore and the reaction rate were the main factors affecting uranium leaching efficiency. Without considering the blockage of pores by precipitation, the Fe2+ in the reinjection fluid had a significant negative influence on uranium leaching.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ wang_ion_2022 Serial 195  
Permanent link to this record
 

 
Author Heidari, B.; Prideaux, V.; Jack, K.; Jaber, F.H. url  openurl
  Title A planning framework to mitigate localized urban stormwater inlet flooding using distributed Green Stormwater Infrastructure at an urban scale: Case study of Dallas, Texas Type Journal Article
  Year 2023 Publication Journal of Hydrology Abbreviated Journal  
  Volume 621 Issue Pages 129538  
  Keywords Green stormwater infrastructure, Localized inlet pluvial flooding, Opportunity subwatersheds, Stormwater investment prioritization, Resilient urban watershed planning  
  Abstract Mitigation of localized pluvial flooding is one of the major resiliency goals in urban environments, and Green Stormwater Infrastructure (GSI) has the potential to deliver such an outcome. However, there is a lack of systematic approaches to prioritize investment in different candidate areas. This study provides a framework to identify vulnerable stormwater drainage inlets and their contributing areas, prioritize them, identify dominant factors in their selection, assess the potential of GSI in mitigating their overflows, and compare the impact and its cost to gray infrastructure upgrade alternatives. Using SWMM 5.1.013, decision trees, and a volumetric-based assessment of GSI overflow capture, we applied the framework to the City of Dallas, Texas, for three design storms with three GSI practices— bioretention cells, raingardens, and rainwater harvesting tanks. Results showed that there was a significant increase in the number of overflowing stormwater drainage inlets, referred to as hotspots, and their contributing subwatersheds, referred to as opportunity areas, with more intense storms especially in problematic watersheds. Also, prioritization results provided a series of maps to rank the opportunity areas based on overflow severity, recurrence of the overflows, and GSI availability. Moreover, classification results showed that inlet features, especially the inlet depth, were the dominant factors in the identification of the non-problematic inlets. Finally, the GSI impact assessment showed substantial overflow mitigation even at the “very high” severity levels when GSI is comprehensively deployed across opportunity areas. Despite gray infrastructure upgrades yielding higher reduction levels, their cost per cubic meter was higher than GSI. Therefore, a combination of GSI and gray results in maximum overflow reduction at a lower cost compared to common practices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Heidari2023129538 Serial 226  
Permanent link to this record
 

 
Author Gimeno, M.J.; Tullborg, E.-L.; Nilsson, A.-C.; Auqué, L.F.; Nilsson, L. url  openurl
  Title Hydrogeochemical characterisation of the groundwater in the crystalline basement of Forsmark, the selected area for the geological nuclear repositories in Sweden Type Journal Article
  Year 2023 Publication Journal of Hydrology Abbreviated Journal  
  Volume 624 Issue Pages 129818  
  Keywords Crystalline bedrock, Deep geological repository, Glacial meltwater intrusion, Groundwater mixing, Hydrogeochemical model, Nuclear waste disposal  
  Abstract Numerous groundwater analyses from the crystalline bedrock in the Forsmark area have been performed between 2002 and 2019, together with thorough geological, geophysical, and hydrogeological studies, within the site investigations carried out by the Swedish Nuclear Fuel and Waste Management Company. The groundwater samples have been taken from boreholes down to ≈ 1000 m and the analysis include major- and trace-elements, stable and radiogenic isotopes, gases and microbes. The chemical and isotopic composition of these groundwaters evidences the presence of non-marine brackish to saline groundwaters with very long residence times (many hundreds of thousands of years) and a series of complex mixing events resulting from the recharge of different waters over time: glacial meltwaters, probably from different glaciations of which the latest culminated some 20,000 years ago, and marine waters from the Baltic starting some 7000 years ago. Later, meteoric water and present Baltic Sea water have recharged in different parts of the upper 100 m. These mixing events have also triggered chemical and microbial reactions that have conditioned some of the important groundwater parameters and, together with the structural complexity of the area, they have promoted a heterogeneous distribution of groundwater compositions in the bedrock. Due to these evident differences in chemistry, residence time and origin of the groundwater, several groundwater types were defined in order to facilitate the visualisation and communication. The differentiation (linked to the paleohydrological history of the area) was based on Cl concentration, Cl/Mg ratio (marine component), and δ18O value (glacial component). The work presented in this paper increases the understanding of the groundwater evolution in fractured and compartmentalised aquifers where mixing processes are the most important mechanisms. The model proposed to characterise the present groundwater system of the Forsmark area will also help to predict the future hydrogeochemical behaviour of the groundwater system after the construction of the repositories for the nuclear wastes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ gimeno_hydrogeochemical_2023 Serial 137  
Permanent link to this record
 

 
Author Johnson, R.S.H.; Alila, Y. url  openurl
  Title Nonstationary stochastic paired watershed approach: Investigating forest harvesting effects on floods in two large, nested, and snow-dominated watersheds in British Columbia, Canada Type Journal Article
  Year 2023 Publication Journal of Hydrology Abbreviated Journal  
  Volume 625 Issue Pages 129970  
  Keywords Probabilistic physics, Forest hydrology, Attribution science, Flood Frequency Analysis, Stochastic hydrology, Nonstationarity  
  Abstract Drawing on advances in nonstationary frequency analysis and the science of causation and attribution, this study employs a newly developed nonstationary stochastic paired watershed approach to determine the effect of forest harvesting on snowmelt-generated floods. Moreover, this study furthers the application of stochastic physics to evaluate the environmental controls and drivers of flood response. Physically-based climate and time-varying harvesting data are used as covariates to drive the nonstationary flood frequency distribution parameters to detect, attribute, and quantify the effect of harvesting on floods in the snow-dominated Deadman River (878 km2) and nested Joe Ross Creek (99 km2) watersheds. Harvesting only 21% of the watershed caused a 38% and 84% increase in the mean but no increase in variability around the mean of the frequency distribution in the Deadman River and Joe Ross Creek, respectively. Consequently, the 7-year, 20-year, 50-year, and 100-year flood events became approximately two, four, six, and ten times more frequent in both watersheds. An increase in the mean is posited to occur from an increase in moisture availability following harvest from suppressed snow interception and increased net radiation reaching the snowpack. Variability was not increased because snowmelt synchronization was inhibited by the buffering capacity of abundant lakes, evenly distributed aspects, and widespread spatial distribution of cutblocks in the watersheds, preventing any potential for harvesting to increase the efficiency of runoff delivery to the outlet. Consistent with similar recent studies, the effect of logging on floods is controlled not only by the harvest rate but most importantly the physiographic characteristics of the watershed and the spatial distribution of the cutblocks. Imposed by the probabilistic framework to understanding and predicting the relation between extremes and their environmental controls, commonly used in the general sciences but not forest hydrology, it is the inherent nature of snowmelt-driven flood regimes which cause even modest increases in magnitude, especially in the upper tail of the distribution, to translate into surprisingly large changes in frequency. Contrary to conventional wisdom, harvesting influenced small, medium, and very large flood events, and the sensitivity to harvest increased with increasing flood event size and watershed area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Johnson2023129970 Serial 245  
Permanent link to this record
 

 
Author Wang, B.; Luo, Y.; Qian, J.-zhong; Liu, J.-hui; Li, X.; Zhang, Y.-hong; Chen, Q.-qian; Li, L.-yao; Liang, D.-ye; Huang, J. url  openurl
  Title Machine learning–based optimal design of the in-situ leaching process parameter (ISLPP) for the acid in-situ leaching of uranium Type Journal Article
  Year 2023 Publication Journal of Hydrology Abbreviated Journal  
  Volume 626 Issue Pages 130234  
  Keywords In-situ leaching, Injection rate design, Lixiviant concentration design, Machine learning, Simulation-optimisation, Uncertainty  
  Abstract The migration process of leached uranium in the in-situ leaching of uranium is considered a typical reactive transport problem. During this process, the lixiviant concentration and injection rate are important in-situ leaching process parameters (ISLPP) to efficiently recover uranium. However, several uncertain factors affect the outcomes of the ISLPP design. In addition, the repeated use of the reactive transport model (RTM) for investigating the acid in-situ leaching of uranium with the application of the Monte Carlo method leads to a substantial computational load. For this reason, a machine learning (ML)–based surrogate model was developed with the backpropagation neural network (BPNN) method to replace the RTM under the condition of uncertain parameters. Moreover, the simulated annealing optimisation model for ISLPP was created based on the proposed surrogate model. The optimal ISLPP was achieved that generated maximum profits from uranium recovery under different lixiviant prices, uranium prices and exploitation times. The optimal design framework of ISLPP based on the proposed ML algorithm was then applied in the Bayan-Uul sandstone-type uranium deposit in Inner Mongolia, China. From our analysis, it was demonstrated that the ML-based surrogate model exhibited great fitness with the RTM. The optimal results of the ISLPP indicated that the lixiviant concentration and injection rate could be adjusted based on the fluctuations in lixiviant price, uranium price and exploitation time. If the prices of sulphuric acid were high, a specific concentration of hydrogen peroxide could be injected into the injection well to promote the oxidation and dissolution of the uranium ore to increase the income from the uranium recovery. The optimisation model can also use the ISLPP scheme to boost the revenues from different lixiviant prices, uranium prices and exploitation times under the uncertainty of porosity, illustrating the applicability of the ML-based optimal design method of ISLPP in ISL mining. A general framework for developing surrogate models, as well as for conducting uncertainty analyses for a wide range of groundwater models was proposed here yielding valuable insights.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ wang_machine_2023 Serial 210  
Permanent link to this record
 

 
Author Leeuwen, Z.R. van; Klaar, M.J.; Smith, M.W.; Brown, L.E. url  openurl
  Title Quantifying the natural flood management potential of leaky dams in upland catchments, Part II: Leaky dam impacts on flood peak magnitude Type Journal Article
  Year 2024 Publication Journal of Hydrology Abbreviated Journal  
  Volume 628 Issue Pages 130449  
  Keywords Nature based solutions, Large wood, Empirical, Hydrograph analysis, Ecosystem services, Transfer function noise model  
  Abstract Leaky dams are an increasingly popular natural flood management measure, yet their impacts on flood peak magnitude have not yet been empirically quantified for a range of event types and magnitudes, even at the stream scale. In this study, the novel application of a transfer function noise modelling approach to empirical Before-After-Control-Impact stage data from an upland catchment allowed leaky dam effectiveness in reducing flood peak magnitude to be quantified. Flood peak stage and discharge magnitude changes were assessed from empirical data for 50 single and multi-peaked high flow events with return periods ranging from less than one year to six years. Overall, event peak magnitude was significantly reduced following the installation of eight leaky dams on the impact stream. Effectiveness was highly variable, but on average, flood peak magnitude was reduced by 10% for events with a return period up to one year. Some of the variability was explained by the size of the event and whether it was a single or multi-peaked event. This finding emphasises the need to manage expectations by considering both a range of event magnitudes and types when designing or assessing leaky dam natural flood management schemes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Vanleeuwen2024130449 Serial 228  
Permanent link to this record
 

 
Author Seidl, C.; Wheeler, S.A.; Page, D. url  openurl
  Title Understanding the global success criteria for managed aquifer recharge schemes Type Journal Article
  Year 2024 Publication Journal of Hydrology Abbreviated Journal  
  Volume 628 Issue Pages 130469  
  Keywords Managed Aquifer Recharge (MAR), Fuzzy-set Qualitative Comparative Analysis, Water banking, Groundwater, Water management, Water storage  
  Abstract Water availability and quality issues will only gain importance in the future, with climate change impacts putting increasing pressure on global water resources. Dealing with these challenges requires drawing on all available water management tools, including Managed Aquifer Recharge (MAR). Although MAR has seen increasing global implementation during the last half a century, it is still often overlooked as a management tool. While technical, bio-physical, and hydrogeological aspects of MAR are well researched, this cannot be said for socio-economic and other governance factors. Where information is available, this study seeks to understand the conditions necessary for MAR success. We apply fuzzy-set Qualitative Comparative Analysis on 313 world MAR applications, and also model separately for high- and low-middle-income countries. Results show that sophisticated hydrogeological site understanding and scheme operation is paramount for MAR success, as is utilizing natural water sources for high value end uses. Successful high-income country MAR schemes tend to be large and utilize natural water sources and sophisticated water injection and treatment methods to augment potable water supply; while successful low-middle-income country schemes are not large, older than 20 years, and use gravity infiltration methods and (limited) no water treatment. These findings will help inform the future suitability of MAR application design and its likely success within various contexts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Seidl2024130469 Serial 273  
Permanent link to this record
 

 
Author Lim, S.; Chase, B.M.; Chevalier, M.; Reimer, P.J. url  openurl
  Title 50,000years of vegetation and climate change in the southern Namib Desert, Pella, South Africa Type Journal Article
  Year 2016 Publication Palaeogeography, Palaeoclimatology, Palaeoecology Abbreviated Journal  
  Volume 451 Issue Pages 197-209  
  Keywords Climate reconstruction, Late Quaternary, Namib Desert, Pollen, Rock hyrax middens, South Africa  
  Abstract This paper presents the first continuous pollen record from the southern Namib Desert spanning the last 50,000years. Obtained from rock hyrax middens found near the town of Pella, South Africa, these data are used to reconstruct vegetation change and quantitative estimates of temperature and aridity. Results indicate that the last glacial period was characterised by increased water availability at the site relative to the Holocene. Changes in temperature and potential evapotranspiration appear to have played a significant role in determining the hydrologic balance. The record can be considered in two sections: 1) the last glacial period, when low temperatures favoured the development of more mesic Nama-Karoo vegetation at the site, with periods of increased humidity concurrent with increased coastal upwelling, both responding to lower global/regional temperatures; and 2) the Holocene, during which time high temperatures and potential evapotranspiration resulted in increased aridity and an expansion of the Desert Biome. During this latter period, increases in upwelling intensity created drier conditions at the site. Considered in the context of discussions of forcing mechanisms of regional climate change and environmental dynamics, the results from Pella stand in clear contrast with many inferences of terrestrial environmental change derived from regional marine records. Observations of a strong precessional signal and interpretations of increased humidity during phases of high local summer insolation in the marine records are not consistent with the data from Pella. Similarly, while high percentages of Restionaceae pollen has been observed in marine sediments during the last glacial period, they do not exceed 1% of the assemblage from Pella, indicating that no significant expansion of the Fynbos Biome has occurred during the last 50,000years. These findings pose interesting questions regarding the nature of environmental change in southwestern Africa, and the significance of the diverse records that have been obtained from the region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-0182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lim_50000years_2016 Serial 107  
Permanent link to this record
 

 
Author Belz, L.; Schüller, I.; Wehrmann, A.; Köster, J.; Wilkes, H. url  openurl
  Title The leaf wax biomarker record of a Namibian salt pan reveals enhanced summer rainfall during the Last Glacial-Interglacial Transition Type Journal Article
  Year 2020 Publication Palaeogeography, Palaeoclimatology, Palaeoecology Abbreviated Journal  
  Volume 543 Issue Pages 109561  
  Keywords -Alkanes, -Alkanols, Late Quaternary, Organic geochemistry, Palaeohydrology, Southern Africa  
  Abstract Conventional continental geoarchives are rarely available in arid southern Africa. Therefore, palaeoclimate data in this area are still patchy and late Quaternary climate development is only poorly understood. In the western Kalahari, salt pans (playas, ephemeral lakes) are common and can feature quasi-continuous sedimentation. This study presents the first climate-related biomarker record using sediments from the Omongwa Pan, a Kalahari salt pan located in eastern Namibia. Our approach to reconstruct vegetation and hydrology focuses on biogeochemical bulk parameters and plant wax-derived lipid biomarkers (n-alkanes, n-alkanols, and fatty acids) and their compound-specific carbon and hydrogen isotopic compositions. The presented record reaches back to 27 ka. During the glacial, rather low δ2H values of n-alkanes and low sediment input exclude a strong influence of winter rainfall. n-Alkane and n-alkanol distributions and δ13C values of n-hentriacontane (n-C31) indicate a shift to a vegetation with a higher proportion of C4 plants at the end of the Last Glacial Maximum until the end of Heinrich Stadial I (ca. 18–14.8 ka), which we interpret to indicate an abrupt excursion to a short wetter period likely to be caused by a temporary southward shift of the Intertropical Convergence Zone. Shifts in δ2H values of n-C31 and plant wax parameters give evidence for changes to drier conditions during early Holocene. Comparison of this dataset with representative continental records from the region points to a major influence of summer rainfall at Omongwa Pan during the regarded time span and demonstrates the potential of southern African salt pans as archives for biomarker-based climate proxies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-0182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ belz_leaf_2020 Serial 104  
Permanent link to this record
 

 
Author Zhang, Y.; Liu, X.; Yuan, S.; Song, J.; Chen, W.; Dias, D. url  openurl
  Title A two-dimensional experimental study of active progressive failure of deeply buried Qanat tunnels in sandy ground Type Journal Article
  Year 2023 Publication Soils and Foundations Abbreviated Journal  
  Volume 63 Issue 3 Pages 101323  
  Keywords Qanat tunnel, Sand, Failure effect, Soil arching, Model test  
  Abstract As an ancient underground hydraulic engineering facility, the Qanat system has been used to draw groundwater from arid regions. A qanat is a horizontal tunnel with a slight incline that draws groundwater from a higher location and delivers it to lower agricultural land. During long-term water delivery, the qanat tunnel has experienced different degrees of aging and collapse, which may result in the significant ground settlement and even disasters. This paper developed a two-dimensional laboratory system to investigate the influence of progressive failure on the stability of deeply buried qanat tunnels. The developed system is fully instrumented with a particle image velocimetry (PIV) system and earth pressure and displacement monitoring. A special cylindrical membrane tube is designed and connected to an advanced pressure–volume controller to simulate the step-wise failure process of the tunnel. Three model tests were conducted on a dry sand considering the buried qanat tunnels at three different depths. Experimental results clearly show the progressive evolution of soil arching effect in the dry sand associated with the progressive failure of the tunnels. The failure of the Qanat ground starts from the vault and develops upwards, which is closely related to the evolution of stress contour at three consecutive stages. Ground surface settlement and volume loss corresponding to three burial depths were compared. A deeply buried qanat tunnel has a small effect on surface settlement. Earth pressure evolution on the 2D plane shows the load redistribution when the qanat collapses. The maximum arch and the initial point of the limit state correspond to a volume loss of 12.5 % and 50 %, respectively. For the collapse of the deep buried qanat tunnel, ground earth pressure evolution can be divided into a stress-increasing region, stress-decreasing region, and no redistribution region. Furthermore, a multi trap-door model considering soil expansion is proposed to describe the progressive failure behavior and its effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-0806 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Zhang2023101323 Serial 274  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: