toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Brook, G.A.; Marais, E.; Srivastava, P.; Jordan, T. url  openurl
  Title Timing of lake-level changes in Etosha Pan, Namibia, since the middle Holocene from OSL ages of relict shorelines in the Okondeka region Type Journal Article
  Year 2007 Publication Quaternary International Abbreviated Journal  
  Volume (down) 175 Issue 1 Pages 29-40  
  Keywords  
  Abstract In 2003 examination of aerial photographs revealed a series of previously unknown relict shorelines on the arcuate ridge, possibly a clay lunette dune, that marks the western boundary of Etosha Pan in Namibia. The shorelines are 120–600m wide and the most prominent extend for tens of km around the lunette dune. The shorelines were examined on the ground in 2004 and an attempt was made to date the three lowest levels at ca. 5, 2.5 and 1m above the present pan surface. The OSL ages obtained indicate higher and more prolonged lake conditions than today at ca. 6.4, 4.0 and 2.1ka with the youngest shoreline sediments resting on an ancient pan surface dating to ca. 13ka. The evidence indicates dry conditions in the pan at ca. 13ka, wetter conditions and higher lake levels in the middle Holocene followed by a decline in lake levels to the present. Periods of inundation were of sufficient duration to produce shorelines at the southwestern end of the pan due to the prevailing northeasterly winds that would have maximized wave action along this section of the pan margin. The Etosha findings, together with other regional paleoclimate data, suggest four periods of increased wetness in SW Africa during the Holocene at 7–5, 4.5–3.5, 2.5–1.7 and ca. 1.0ka. There is widespread evidence for the oldest of these periods suggesting that it was a prominent and widespread interval of wetness. Prior to ca. 8.0ka the climate may have been drier than today.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-6182 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ brook_timing_2007 Serial 97  
Permanent link to this record
 

 
Author Jamali, B.; Bach, P.M.; Deletic, A. url  openurl
  Title Rainwater harvesting for urban flood management – An integrated modelling framework Type Journal Article
  Year 2020 Publication Water Research Abbreviated Journal  
  Volume (down) 171 Issue Pages 115372  
  Keywords Rainwater harvesting tanks, Urban flood simulation, Rapid flood inundation model, Urban flood risk mitigation  
  Abstract It is well known that rainwater harvesting (RWH) can augment water supply and reduce stormwater pollutant discharges. Due to the lack of continuous 2D modelling of urban flood coverage and its associated damage, the ability of RWH to reduce urban flood risks has not been fully evaluated. Literature suggests that small distributed storage spaces using RWH tanks will reduce flood damage only during small to medium flooding events and therefore cumulative assessment of their benefits is needed. In this study we developed a new integrated modelling framework that implements a semi-continuous simulation approach to investigate flood prevention and water supply benefits of RWH tanks. The framework includes a continuous mass balance simulation model that considers antecedent rainfall conditions and water demand/usage of tanks and predicts the available storage prior to each storm event. To do so, this model couples a rainfall-runoff tank storage model with a detailed stochastic end-use water demand model. The available storage capacity of tanks is then used as a boundary condition for the novel rapid flood simulation model. This flood model was developed by coupling the U.S. EPA Storm Water Management Model (SWMM) to the Cellular-Automata Fast Flood Evaluation (CA-ffé) model to predict the inundation depth caused by surcharges over the capacity of the drainage network. The stage-depth damage curves method was used to calculate time series of flood damage, which are then directly used for flood risk and cost-benefit analysis. The model was tested through a case study in Melbourne, using a recorded rainfall time series of 85 years (after validating the flood model against 1D-2D MIKE-FLOOD). Results showed that extensive implementation of RWH tanks in the study area is economically feasible and can reduce expected annual damage in the catchment by up to approximately 30 percent. Availability of storage space and temporal distribution of rainfall within an event were important factors affecting tank performance for flood reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Jamali2020115372 Serial 239  
Permanent link to this record
 

 
Author Karaimeh, S.A. url  openurl
  Title Maintaining desert cultivation: Roman, Byzantine, and Early Islamic water-strategies at Udhruh region, Jordan Type Journal Article
  Year 2019 Publication Journal of Arid Environments Abbreviated Journal  
  Volume (down) 166 Issue Pages 108-115  
  Keywords Irrigation, Qanat, Cultivation, Arid environment, Nabataean, Jordan  
  Abstract The site of Udhruh is located in the arid desert of southern Jordan, about 15 km to the east of Petra. The site was built by the Nabataeans but expanded by the Romans (as a defensive site) and was continuously occupied until the Early Islamic period. It receives less than the 200 mm of annual precipitation, which is crucial for agricultural cultivation. Archaeological evidence from earlier excavations together with new data from several survey projects indicate that areas around Udhruh were cultivated throughout the Roman, Byzantine, and Early Islamic periods (300 BCE–800 CE). The fundamental question is: how did the people of Udhruh sustain their community in the desert, and how did they transform the desert into arable land? The landscape could be utilised thanks to sophisticated water management and irrigation techniques. At least four underground qanat systems were identified providing Udhruh with access to groundwater. At the terminal end of the qanat systems, several types of closed surface channels conveyed the water to reservoirs, which subsequently distributed the water to the field systems. The water systems of Udhruh differ from the well-known Nabataean systems in the surrounding area. As Udhruh was taken over by the Roman army in 106 CE, this study analyses how the Nabataean water systems continued to function and adapt through the Roman and Byzantine periods. A complete understanding of Udhruh’s water systems helps to reconstruct past land use, agricultural activity, and irrigation practices in a currently arid region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-1963 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Alkaraimeh2019108 Serial 271  
Permanent link to this record
 

 
Author Li, X.; Shen, K.; Li, Q.; Deng, Y.; Zhu, P.; Wang, D. url  openurl
  Title Roll-over behavior in current-voltage curve introduced by an energy barrier at the front contact in thin film CdTe solar cell Type Journal Article
  Year 2018 Publication Solar Energy Abbreviated Journal  
  Volume (down) 165 Issue Pages 27-34  
  Keywords AlO HRT layer, Band alignment, CdTe solar cell, Roll-over behavior  
  Abstract Roll-over phenomenon in the current–voltage (J–V) curve is often observed in a CdTe thin film solar cell. The roll-over phenomenon, which is occurred near the open-circuit voltage in a light J–V curve, is due to Schottky energy barrier formed at the CdTe/metal interface in a CdTe solar cell back contact. In this study we report a J–V roll-over phenomenon which is induced by an energy barrier at the front contact of a CdTe solar cell. Two kinds of oxides, namely, Al2O3 and SnO2, were deposited as high-resistance transparent (HRT) layer between the window layer CdS and the fluorine doped tin oxide (FTO) front electrode in CdTe solar cells. These two oxides present much different electronic band alignment with FTO and CdS. SnO2 formed almost no energy barrier with CdS, this allowed smooth transport for photo-generated electrons from CdTe to CdS and FTO. However, Al2O3 formed a high energy barrier with CdS. The rather high energy barrier with a value of 3.43 eV at the CdS/Al2O3 interface induced a J–V roll-over phenomenon in a CdTe thin film solar cell, which dramatically led to a quick decrease for the cell device efficiency. The electron transport at the FTO/Al2O3/CdS interface is governed by tunneling effect. The results presented in this study demonstrate that the band structure at the front electrode plays an important role for the performance of a CdTe thin film solar cell.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-092x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ li_roll-over_2018 Serial 187  
Permanent link to this record
 

 
Author Holmes, M.; Campbell, E.E.; Wit, M. de; Taylor, J.C. url  openurl
  Title Can diatoms be used as a biomonitoring tool for surface and groundwater?: Towards a baseline for Karoo water Type Journal Article
  Year 2023 Publication South African Journal of Botany Abbreviated Journal  
  Volume (down) 161 Issue Pages 211-221  
  Keywords Bioindicator, Diatom, Hydraulic fracturing, Karoo, Water quality  
  Abstract The environmental risks from shale gas extraction through the unconventional method of ‘fracking’ are considerable and impact on water supplies below and above ground. Since 2010 the recovery of natural shale gas through fracking has been proposed in parts of the fragile semi-arid ecosystems that make up the Karoo biome in South Africa. These unique ecosystems are heavily reliant on underground water, intermittent and ephemeral springs, which are at great risk of contamination by fracking processes. Diatoms are present in all water bodies and reflect aspects of the environment in which they are located. As the possibility of fracking has not been removed, the aim of the project was to determine if diatoms could be used for rapid biomonitoring of underground and surface waters in the Karoo. Over a period of 24 months, water samples and diatom species were collected simultaneously from 65 sites. A total of 388 diatom taxa were identified from 290 samples with seasonal and substrate variation affecting species composition but not the environmental information. Species diversity information, on the other hand, often varied significantly between substrates within a single sample. Analysis using CCA established that the diatom composition was affected by lithium, oxidized nitrogen, electrical conductivity, and sulphate levels in the sampled water. We conclude that changes in diatom community composition in the Karoo do reflect the water chemistry and could be useful as bioindicators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0254-6299 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ holmes_can_2023 Serial 163  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: