|   | 
Details
   web
Records
Author Hofmann, H.; Pearce, J.K.; Hayes, P.; Golding, S.D.; Hall, N.; Baublys, K.A.; Raiber, M.; Suckow, A.
Title Multi-tracer approach to constrain groundwater flow and geochemical baseline assessments for CO2 sequestration in deep sedimentary basins Type Journal Article
Year 2023 Publication International Journal of Coal Geology Abbreviated Journal
Volume (up) Issue Pages 104438
Keywords CO geological storage, Great Artesian Basin, Groundwater chemistry, Isotopic tracer, Surat Basin
Abstract Geological storage of gases will be necessary in the push to net zero and the energy transition to reduce carbon emissions to atmosphere. These include CO2 geological storage in suitable sandstone reservoirs. Understanding groundwater flow, connectivity and hydrogeochemical processes in aquifer and storage systems is vital to prevent risk and protect important water resources, such as the Great Artesian Basin. Here, we provide a ‘tool-box’ of geochemical assessment methods to provide information on flow patterns through the basin’s aquifers (changes in chemistry along flow path), stagnant versus flowing conditions (cosmogenic isotopes and noble gases), inter-aquifer connectivity and seal properties (major ions, Sr and stable isotopes), water quality (major ions and metals) and general assessments on residence times of groundwater (cosmogenic isotopes and noble gases). This information can be used with reservoir and groundwater models to inform on possible changes in the above-mentioned processes and serve as input parameters for CO2 injection impact modelling. We demonstrate the use and interpretation on an example of a potential CO2 storage geological sequestration site in the Surat Basin, part of the Great Artesian Basin, and the aquifers that overly the reservoir. The stable water isotopes are depleted compared to average rainfall and most likely indicate greater contributions from monsoonal rain events from the northern monsoonal troughs, where amount and rainout effects lead to the depletion rather than colder recharge climates. This is supported by the modern recharge temperatures from noble gases. Inter-aquifer mixing between the Precipice Sandstone reservoir and the Hutton Sandstone aquifer seems unlikely as the Sr isotope ratios are distinctly different suggesting that the Evergreen Formation is a seal in the locations sampled. Mixing, however, occurs on the edges of the basin, especially in the south-east and east where the Surat Basin transitions into the Clarence-Moreton Basin. Groundwater flow appears to be to the south in the Precipice Sandstone, with a component of flow east to the Clarence-Morton Basin. The cosmogenic isotopes and noble gases strongly indicate very long residence times of groundwater in the central south Precipice Sandstone around a proposed storage site. 14C values below analytical uncertainty, R36Cl ratios at secular equilibrium as well as high He concentrations and high 40Ar/36Ar ratios support the argument that groundwater flow in this area is extremely slow or groundwater is stagnant. The results of this study reflect the geological and hydrogeological complexities of sedimentary basins and that baseline studies, such as this one, are paramount for management strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-5162 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hofmann_multi-tracer_2023 Serial 165
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D.
Title Water harvesting Type Book Chapter
Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal
Volume (up) Issue Pages 593-607
Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security
Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.
Address
Corporate Author Thesis
Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-323-95133-3 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 225
Permanent link to this record
 

 
Author Pisa, P.F.; Nehren, U.; Sebesvari, Z.; Rai, S.; Wong, I.
Title Chapter 17 – Nature-based solutions to reduce risks and build resilience in mountain regions Type Book Chapter
Year 2024 Publication Safeguarding Mountain Social-Ecological Systems Abbreviated Journal
Volume (up) Issue Pages 115-126
Keywords Nature-based solutions, mountains, climate change adaptation, disaster risk reduction, ecosystem services, SDGs
Abstract Nature-based solutions (NbS) are increasingly recognized as effective environmental-management measures to address societal challenges such as climate change, water and food security, and disaster risk reduction, thus contributing to human well-being and protecting biodiversity. In addition to being particularly susceptible to these challenges, mountain areas are prone to multihazard conditions, due to their steep topography and particular climatic conditions. NbS can contribute greatly to the sustainable development of mountain ecosystems. This chapter presents examples of NbS in mountain areas around the globe that demonstrate how this approach contributes to achieving sustainable development.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor Schneiderbauer, S.; Pisa, P.F.; Shroder, J.F.; Szarzynski, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-12-822095-5 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Fontanellapisa2024115 Serial 263
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D.
Title Water harvesting Type Book Chapter
Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal
Volume (up) Issue Pages 593-607
Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security
Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.
Address
Corporate Author Thesis
Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-323-95133-3 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 265
Permanent link to this record
 

 
Author Androvitsanea, A.; Fawzy, M.; Fuchs, J.; Külls, C.; Fahlbusch, H.; Heiden, J.
Title Hydrologische Bedingungen im Heraion von Samos vom 12. bis 8. Jh. v. Chr. und ihre Bedeutung für die wasserbauliche Infrastruktur Type Journal Article
Year 2018 Publication Environmental Water Engineering Abbreviated Journal
Volume (up) 1 Issue 1 Pages 1-21
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Androvitsanea2018hydrologische Serial 17
Permanent link to this record
 

 
Author Abiye, T.
Title Synthesis on groundwater recharge in Southern Africa: A supporting tool for groundwater users Type Journal Article
Year 2016 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume (up) 2-3 Issue Pages 182-189
Keywords Arid and semi-arid areas, Groundwater recharge, Recharge estimation methods, Southern Africa
Abstract This synthesis on groundwater recharge targets the Southern African region as a result of the dependence of the community and economic sector on the groundwater resource. Several literature based recharge studies were collected and assessed in order to find out the main controls to the occurrence of recharge. The Water Table Fluctuation and Base flow separation methods have been tested in the catchment that drains crystalline basement rocks and dolostones close to the city of Johannesburg, South Africa. Based on the assessed data the Chloride Mass Balance method resulted in groundwater recharge of less than 4% of the rainfall, while it reaches 20%, when rainfall exceeds 600mm. For the classical water balance method, recharge proportion is less than 3% of rainfall as a result of very high ambient temperature in the region. Based on the Saturated Volume Fluctuation and Water Table Fluctuation methods, recharge could be less than 6% for annual rainfall of less than 600mm. Observational results further suggest that sporadic recharge from high intensity rainfall has important contribution to the groundwater recharge in the region, owing to the presence of permeable geological cover, which could not be fully captured by most of the recharge estimation methods. This study further documents an evaluation of the most reliable recharge estimation methods in the area such as the chloride mass balance, saturated volume fluctuation and water table fluctuation methods in order to successfully manage the groundwater resource.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ abiye_synthesis_2016 Serial 101
Permanent link to this record
 

 
Author Sahoo, S.K.; Jha, V.N.; Patra, A.C.; Jha, S.K.; Kulkarni, M.S.
Title Scientific background and methodology adopted on derivation of regulatory limit for uranium in drinking water – A global perspective Type Journal Article
Year 2020 Publication Environmental Advances Abbreviated Journal
Volume (up) 2 Issue Pages 100020
Keywords Drinking water, Global policy, Regulatory limits, Toxicity, Uranium
Abstract Guideline values are prescribed for drinking water to ensure long term protection of the public against anticipated potential adverse effects. There is a great public and regulatory agencies interest in the guideline values of uranium due to its complex behavior in natural aquatic system and divergent guideline values across the countries. Wide variability in guideline values of uranium in drinking water may be attributed to toxicity reference point, variation in threshold values, uncertainty within intraspecies and interspecies, resource availability, socio-economic condition, variation in ingestion rate, etc. Although guideline values vary to a great extent, reasonable scientific basis and technical judgments are essential before it could be implemented. Globally guideline values are derived considering its radiological or chemical toxicity. Minimal or no adverse effect criterions are normally chosen as the basis for deriving the guideline values of uranium. In India, the drinking water limit of 60 µg/L has been estimated on the premise of its radiological concern. A guideline concentration of 2 µg/L is recommended in Japan while 1700 µg/L in Russia. The relative merit of different experimental assumption, scientific approach and its methodology adopted for derivation of guideline value of uranium in drinking water in India and other countries is discussed in the paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2666-7657 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ sahoo_scientific_2020 Serial 127
Permanent link to this record
 

 
Author Hu, K.; Wang, Q.; Tao, G.; Wang, A.; Ding, D.
Title Experimental Study on Restoration of Polluted Groundwater from in Situ Leaching Uranium Mining with Sulfate Reducing Bacteria and ZVI-SRB Type Journal Article
Year 2011 Publication Procedia Earth and Planetary Science Abbreviated Journal
Volume (up) 2 Issue Pages 150-155
Keywords In situ leaching of uranium, nitrate radical, sulfate radical, Sulfate-Reducing Bacteria (SRB), Zero Valent Iron (ZVI)
Abstract In the case of in situ leaching of uranium, the primitive geochemical environment for groundwater is changed since leachant is injected into the water beaving uranium deposit. This increases the concentration of uranium and results in the groundwater contamination.Microbial reduction technology by Sulfate reducing bacteria and Zero Valent Iron were employed to treat uranium wastewater. The experiments were conducted to evaluate the influence of anion (sulfate and nitrate) on dealing with uranium wastewater. Experimental results show that the utilization of both SRB system and ZVI – SRB system to process uranium wastewater is affected by sulfate ion and nitrate ion. As the concentration of sulfate radical is lower than 4000mg/L, sulfate-reducing bacteria has no influence on precipitated uranium. However, as the concentration of sulfate is more than 6,000mg/L, uranium removal rate decreases significantly, from 80% to 14.1%. When adding sulfate radical on ZVI – SRB system to process uranium wastewater, its uranium removal rate is higher than SRB system. Low concentration of nitrate contributes to reduction metabolism of SRB. High concentration of nitrate inhibits the growth and metabolism of SRB and affects the treatment efficiency of uranium wastewater. When the concentration of nitrate reaches 1500mg/L, uranium removal rate is less than 0.1%. Nevertheless, as the concentration of nitrate is lower than 1000mg/L, uranium removal rate could reach more than 75%. As existence of nitrate radical, uranium removal rate of SRB by adding ZVI is higher than that without adding.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1878-5220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hu_experimental_2011 Serial 202
Permanent link to this record
 

 
Author Khaneiki, M.L.; Al-Ghafri, A.S.; Klöve, B.; Haghighi, A.T.
Title Sustainability and virtual water: The lessons of history Type Journal Article
Year 2022 Publication Geography and Sustainability Abbreviated Journal
Volume (up) 3 Issue 4 Pages 358-365
Keywords Proto-industrialization, Water scarcity, Non-hydraulic polity, Virtual water, Political economy
Abstract This article aims to show that virtual water has historically been an adaptation strategy that enabled some arid regions to develop a prosperous economy without putting pressure on their scarce water resources. Virtual water is referred to as the total amount of water that is consumed to produce goods and services. As an example, in arid central Iran, the deficiency in agricultural revenues was offset by more investment in local industries that enjoyed a perennial capacity to employ more workers. The revenues of local industries weaned the population from irrigated agriculture, since most of their raw materials and also food stuff were imported from other regions, bringing a remarkable amount of virtual water. This virtual water not only sustained the region’s inhabitants, but also set the stage for a powerful polity in the face of a rapid population growth between the 13th and 15th centuries AD. The resultant surplus products entailed a vast and safe network of roads, provided by both entrepreneurs and government. Therefore, it became possible to import more feedstock such as cocoons from water-abundant regions and then export silk textiles with considerable value-added. This article concludes that a similar model of virtual water can remedy the ongoing water crisis in central Iran, where groundwater reserves are overexploited, and many rural and urban centers are teetering on the edge of socio-ecological collapse. History holds an urgent lesson on sustainability for our today’s policy that stubbornly peruses agriculture and other high-water-demand sectors in an arid region whose development has always been dependent on virtual water.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2666-6839 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Khaneiki2022358 Serial 272
Permanent link to this record
 

 
Author Ardelt, G.; Külls, C.; Hellbrück, H.
Title Towards intrinsic molecular communication using isotopic isomerism Type Journal Article
Year 2018 Publication Open Journal of Internet Of Things (OJIOT) Abbreviated Journal
Volume (up) 4 Issue 1 Pages 135-143
Keywords
Abstract
Address
Corporate Author Thesis
Publisher RonPub Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Ardelt2018towards Serial 18
Permanent link to this record