toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Min, M.; Chen, J.; Wang, J.; Wei, G.; Fayek, M. url  openurl
  Title Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China Type Journal Article
  Year 2005 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 26 Issue 1 Pages 51-69  
  Keywords China, Mineralogy, Paragenesis, Sandstone-hosted roll-type uranium deposit  
  Abstract We present a first paragenetic study of the Wuyier, Wuyisan, Wuyiyi and Shihongtan sandstone-hosted roll-front uranium deposits, northwest China. The mineralization is hosted by Lower–Middle Jurassic coarse- to medium-grained sandstones, which are dark-gray to black due to a mixture of ore minerals and carbonaceous debris. The sandstone is alluvial fan-braided river facies. Minerals associated with these deposits can be broadly categorized as detrital, authigenic, and ore-stage mineralization. Ore minerals consist of uraninite and coffinite. This is the first noted occurrence of coffinite in this type of deposit in China. Sulfide minerals associated with the uranium minerals are pyrite, marcasite, and less commonly, sphalerite and galena. The sulfide minerals are largely in textural equilibrium with the uranium minerals. However, these sulfide minerals occasionally appear to predate, as well as postdate, the uranium minerals. This implies that there are multiple generations of sulfides associated with these deposits. The ore minerals occur interstitially between fossilized wood cells in the sandstones as well as replace fossilized wood and biotite. The deposits are generally low-grade. Primary uranium minerals associated with the low-grade deposits are generally too small, ranging from 0.2 to 0.3 μm in diameter, to be observed by optical microscopy and are only observed by electron microscopy. Mineral paragenesis and textures indicate that these deposits formed under low temperature (30–50 °C) conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ min_mineral_2005 Serial 175  
Permanent link to this record
 

 
Author (up) Min, M.; Xu, H.; Chen, J.; Fayek, M. url  openurl
  Title Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China Type Journal Article
  Year 2005 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 26 Issue 3 Pages 198-206  
  Keywords Biomineralization, China, Roll-front uranium deposit, Sandstone  
  Abstract We show evidence that the primary uranium minerals, uraninite and coffinite, from high-grade ore samples (U3O8\textgreater0.3%) in the Wuyiyi, Wuyier, and Wuyisan sandstone-hosted roll-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically replace fungi and bacteria. Uranium (VI), which was the sole electron acceptor, was likely to have been enzymically reduced. Post-mortem accumulation of uranium may have also occurred through physio-chemical interaction between uranium and negatively-charged cellular sites, and inorganic adsorption or precipitation reactions. These results suggest that microorganisms may have played a key role in formation of the sandstone- or roll-type uranium deposits, which are among the most economically significant uranium deposits in the world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ min_evidence_2005 Serial 186  
Permanent link to this record
 

 
Author (up) Rehm-Berbenni, C.; Druta A.; Åberg, G.; Neguer J.; Külls, C.; Patrizi, G.; Pacha, T.; Kienzle, P.; Bugini, R.; Fiore, M.G. openurl 
  Title Isotope Technologies Applied to the Analysis of Ancient Roman Mortars Type Book Whole
  Year 2005 Publication European Commission Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Results of the CRAFT Project EVK4 CT-2001-30004  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Serial 73  
Permanent link to this record
 

 
Author (up) Schwiede, M.; Duijnisveld, W.H.M.; Böttcher, J. url  openurl
  Title Investigation of processes leading to nitrate enrichment in soils in the Kalahari Region, Botswana Type Journal Article
  Year 2005 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume 30 Issue 11 Pages 712-716  
  Keywords Nitrate, Arenosol soils, Semi-arid, Kalahari, Cattle, Chloride, Travel time  
  Abstract In Southern Africa elevated nitrate concentrations are observed in mostly uninhabited semi-arid areas. In the Kalahari of Botswana groundwater locally exhibits concentrations up to 600mg/l. It is assumed, that nitrate found in the groundwater originates mainly from nitrogen input and transformations in the soils. Our investigations in the Kalahari between Serowe and Orapa show that cattle raising is an important source for enhanced nitrate concentrations in the soils (Arenosols). But also in termite mounds very high nitrate stocks were found, and under natural vegetation (acacia trees and shrubs) nitrate concentrations were mostly unexpectedly high. This nitrate enrichment in the soils poses a serious threat to the groundwater quality. However, calculated soil water age distributions in the unsaturated zone clearly show that today’s nitrate pollution of the groundwater below the investigation area could originate from natural sources, but cannot be caused by the current land use for cattle raising.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Integrated Water Resources Management (IWRM) and the Millennium Development Goals: Managing Water for Peace and Prosperity Approved no  
  Call Number THL @ christoph.kuells @ Schwiede2005712 Serial 276  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: