|   | 
Details
   web
Records
Author (up) Brook, G.A.; Railsback, L.B.; Marais, E.
Title Reassessment of carbonate ages by dating both carbonate and organic material from an Etosha Pan (Namibia) stromatolite: Evidence of humid phases during the last 20ka Type Journal Article
Year 2011 Publication Quaternary International Abbreviated Journal
Volume 229 Issue 1 Pages 24-37
Keywords
Abstract Previous research on lacustrine stromatolites from Etosha Pan in Namibia obtained ages on carbonate close to or beyond the limits of radiocarbon dating. These ages suggested that the basin was likely not subject to extensive flooding during the last ca. 40ka. This study shows that AMS radiocarbon ages for the carbonate of a stromatolite from Poacher’s Point are 15–21ka older than ages for organic material in the stromatolite structure. Calibrated ages range from 30 to 40ka for carbonate and 3–19ka for the organic residue. The new ages, together with petrographic and isotopic data for the stromatolite, have provided important new information on past flooding of Etosha Pan including evidence of prolonged lacustrine conditions during the Holocene Climatic Optimum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1040-6182 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ brook_reassessment_2011 Serial 110
Permanent link to this record
 

 
Author (up) Frey, S.; Külls, C.; Schlosser, C.
Title New Hydrological Age-Dating techniques using cosmogenic radionuclides Beryllium-7 and Sodium-22 Type Conference Article
Year 2011 Publication Proc. IAEA Conf. Monacco Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Frey2011new Serial 48
Permanent link to this record
 

 
Author (up) Hu, K.; Wang, Q.; Tao, G.; Wang, A.; Ding, D.
Title Experimental Study on Restoration of Polluted Groundwater from in Situ Leaching Uranium Mining with Sulfate Reducing Bacteria and ZVI-SRB Type Journal Article
Year 2011 Publication Procedia Earth and Planetary Science Abbreviated Journal
Volume 2 Issue Pages 150-155
Keywords In situ leaching of uranium, nitrate radical, sulfate radical, Sulfate-Reducing Bacteria (SRB), Zero Valent Iron (ZVI)
Abstract In the case of in situ leaching of uranium, the primitive geochemical environment for groundwater is changed since leachant is injected into the water beaving uranium deposit. This increases the concentration of uranium and results in the groundwater contamination.Microbial reduction technology by Sulfate reducing bacteria and Zero Valent Iron were employed to treat uranium wastewater. The experiments were conducted to evaluate the influence of anion (sulfate and nitrate) on dealing with uranium wastewater. Experimental results show that the utilization of both SRB system and ZVI – SRB system to process uranium wastewater is affected by sulfate ion and nitrate ion. As the concentration of sulfate radical is lower than 4000mg/L, sulfate-reducing bacteria has no influence on precipitated uranium. However, as the concentration of sulfate is more than 6,000mg/L, uranium removal rate decreases significantly, from 80% to 14.1%. When adding sulfate radical on ZVI – SRB system to process uranium wastewater, its uranium removal rate is higher than SRB system. Low concentration of nitrate contributes to reduction metabolism of SRB. High concentration of nitrate inhibits the growth and metabolism of SRB and affects the treatment efficiency of uranium wastewater. When the concentration of nitrate reaches 1500mg/L, uranium removal rate is less than 0.1%. Nevertheless, as the concentration of nitrate is lower than 1000mg/L, uranium removal rate could reach more than 75%. As existence of nitrate radical, uranium removal rate of SRB by adding ZVI is higher than that without adding.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1878-5220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hu_experimental_2011 Serial 202
Permanent link to this record
 

 
Author (up) Klimkova, S.; Cernik, M.; Lacinova, L.; Filip, J.; Jancik, D.; Zboril, R.
Title Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching Type Journal Article
Year 2011 Publication Chemosphere Abbreviated Journal
Volume 82 Issue 8 Pages 1178-1184
Keywords Acid mine water, Contaminant removal, Surface stabilizing shell, Water treatment, Zero-valent iron nanoparticles
Abstract Acid mine water from in situ chemical leaching of uranium (Straz pod Ralskem, Czech Republic) was treated in laboratory scale experiments by zero-valent iron nanoparticles (nZVI). For the first time, nZVI were applied for the treatment of the real acid water system containing the miscellaneous mixture of pollutants, where the various removal mechanisms occur simultaneously. Toxicity of the treated saline acid water is caused by major contaminants represented by aluminum and sulphates in a high concentration, as well as by microcontaminants like As, Be, Cd, Cr, Cu, Ni, U, V, and Zn. Laboratory batch experiments proved a significant decrease in concentrations of all the monitored pollutants due to an increase in pH and a decrease in oxidation–reduction potential related to an application of nZVI. The assumed mechanisms of contaminants removal include precipitation of cations in a lower oxidation state, precipitation caused by a simple pH increase and co-precipitation with the formed iron oxyhydroxides. The possibility to control the reaction kinetics through the nature of the surface stabilizing shell (polymer vs. FeO nanolayer) is discussed as an important practical aspect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ klimkova_zero-valent_2011 Serial 196
Permanent link to this record
 

 
Author (up) Külls, C.
Title Rekonstruktion hydrologischer Extreme in der Namibwüste Type Journal Article
Year 2011 Publication Berichte der naturforschenden Gesellschaft zu Freiburg im Breisgau Abbreviated Journal
Volume Issue 101 Pages 69-81
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Serial 71
Permanent link to this record