|   | 
Details
   web
Records
Author Stone, A.E.C.; Edmunds, W.M.
Title Naturally-high nitrate in unsaturated zone sand dunes above the Stampriet Basin, Namibia Type Journal Article
Year 2014 Publication Journal of Arid Environments Abbreviated Journal
Volume (down) 105 Issue Pages 41-51
Keywords Kalahari, Namibia, Nitrate in the unsaturated zone, Stampriet Basin, Transboundary basin, Unsaturated zone recharge
Abstract Elevated groundwater nitrate levels are common in drylands, often in excess of WHO guidelines, with concern for human and animal health. In light of recent attempts to identify nitrate sources in the Kalahari this paper presents the first unsaturated zone (USZ) nitrate profiles and recharge rate estimates for the important transboundary Stampriet Basin, alongside the first rainfall chemistry records. Elevated subsurface nitrate reaches 100–250 and 250–525 mg/L NO3–N, with NO3–N/Cl of 4–12, indicating input above evapotranspiration. Chloride mass balance recharge rates range from 4 to 27 mm/y, indicating a vertical movement of these nitrate pulses toward the water table over multi-decadal timescales. These profiles are sampled from dune crests, away from high concentrations of animals and without termite mounds. Given low-density animal grazing is unlikely to contribute consistent spot-scale nitrate over decades, these profiles give an initial estimate of naturally-produced concentrations. This insight is important for the management of the Stampriet Basin and wider Kalahari groundwater. This study expands our knowledge about elevated nitrate in dryland USZs, demonstrating that it can occur as pulses, probably in response to transient vegetation cover and that it is not limited to long-residence time USZs with very limited downward moisture flux (recharge).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-1963 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ stone_naturally-high_2014 Serial 91
Permanent link to this record
 

 
Author Stone, A.E.C.; Edmunds, W.M.
Title Naturally-high nitrate in unsaturated zone sand dunes above the Stampriet Basin, Namibia Type Journal Article
Year 2014 Publication Journal of Arid Environments Abbreviated Journal
Volume (down) 105 Issue Pages 41-51
Keywords Kalahari, Namibia, Nitrate in the unsaturated zone, Stampriet Basin, Transboundary basin, Unsaturated zone recharge
Abstract Elevated groundwater nitrate levels are common in drylands, often in excess of WHO guidelines, with concern for human and animal health. In light of recent attempts to identify nitrate sources in the Kalahari this paper presents the first unsaturated zone (USZ) nitrate profiles and recharge rate estimates for the important transboundary Stampriet Basin, alongside the first rainfall chemistry records. Elevated subsurface nitrate reaches 100–250 and 250–525 mg/L NO3–N, with NO3–N/Cl of 4–12, indicating input above evapotranspiration. Chloride mass balance recharge rates range from 4 to 27 mm/y, indicating a vertical movement of these nitrate pulses toward the water table over multi-decadal timescales. These profiles are sampled from dune crests, away from high concentrations of animals and without termite mounds. Given low-density animal grazing is unlikely to contribute consistent spot-scale nitrate over decades, these profiles give an initial estimate of naturally-produced concentrations. This insight is important for the management of the Stampriet Basin and wider Kalahari groundwater. This study expands our knowledge about elevated nitrate in dryland USZs, demonstrating that it can occur as pulses, probably in response to transient vegetation cover and that it is not limited to long-residence time USZs with very limited downward moisture flux (recharge).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-1963 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Stone201441 Serial 218
Permanent link to this record
 

 
Author Stone, A.E.C.; Edmunds, W.M.
Title Naturally-high nitrate in unsaturated zone sand dunes above the Stampriet Basin, Namibia Type Journal Article
Year 2014 Publication Journal of Arid Environments Abbreviated Journal
Volume (down) 105 Issue Pages 41-51
Keywords Kalahari, Namibia, Nitrate in the unsaturated zone, Stampriet Basin, Transboundary basin, Unsaturated zone recharge
Abstract Elevated groundwater nitrate levels are common in drylands, often in excess of WHO guidelines, with concern for human and animal health. In light of recent attempts to identify nitrate sources in the Kalahari this paper presents the first unsaturated zone (USZ) nitrate profiles and recharge rate estimates for the important transboundary Stampriet Basin, alongside the first rainfall chemistry records. Elevated subsurface nitrate reaches 100–250 and 250–525 mg/L NO3–N, with NO3–N/Cl of 4–12, indicating input above evapotranspiration. Chloride mass balance recharge rates range from 4 to 27 mm/y, indicating a vertical movement of these nitrate pulses toward the water table over multi-decadal timescales. These profiles are sampled from dune crests, away from high concentrations of animals and without termite mounds. Given low-density animal grazing is unlikely to contribute consistent spot-scale nitrate over decades, these profiles give an initial estimate of naturally-produced concentrations. This insight is important for the management of the Stampriet Basin and wider Kalahari groundwater. This study expands our knowledge about elevated nitrate in dryland USZs, demonstrating that it can occur as pulses, probably in response to transient vegetation cover and that it is not limited to long-residence time USZs with very limited downward moisture flux (recharge).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-1963 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Stone201441 Serial 279
Permanent link to this record
 

 
Author Haque, N.; Norgate, T.
Title The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia Type Journal Article
Year 2014 Publication Journal of Cleaner Production Abbreviated Journal
Volume (down) 84 Issue Pages 382-390
Keywords Copper, GHG emission, Gold, In-situ leaching, LCA, Uranium
Abstract In-situ leaching (ISL) is a chemical method for recovering useful minerals and metals directly from underground ore bodies which is also referred to as ‘solution mining’. ISL is commonly used for uranium mining, accounting for about 45% of global production. The main benefits are claimed to be a lower environmental impact in terms of visual disturbances, emissions, lower energy use, cost compared with conventional open-cut or underground mining methods, and potential utilisation of lower grade resources. However, there is a lack of reported studies on the assessment of the environmental impacts of ISL, particularly greenhouse gas (GHG) emissions using life cycle assessment (LCA) methodology. The SimaPro LCA software was used to estimate the GHG footprint of the ISL of uranium, gold and copper. The total GHG emissions were estimated to be 38.0 kg CO2-e/kg U3O8 concentrate (yellowcake), 29 t CO2-e/kg gold, and 4.78 kg CO2-e/kg Cu. The GHG footprint of ISL uranium was significantly lower than that of conventional mining, however, the footprints of copper and gold were not much less compared with conventional mining methods. This is due to the lower ore grade of ISL deposits and recovery compared with high ore grades and recovery of conventional technology. Additionally, the use of large amount of electricity for pumping in case of ISL contributes to this result. The electricity consumed in pumping leaching solutions was by far the greatest contributor to the well-field related activities associated with ISL of uranium, gold and copper. The main strategy to reduce the GHG footprint of ISL mining should be to use electricity derived from low emission sources. In particular, renewable sources such as solar would be suitable for ISL as these operations are typically in remote locations with smaller deposits compared with conventional mining sites.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ haque_greenhouse_2014 Serial 208
Permanent link to this record
 

 
Author Hamutoko, J.; Mapani, B.; Ellmies, R.; Bittner, A.; Külls, C.
Title A fingerprinting method for the identification of uranium sources in alluvial aquifers: An example from the Khan and Swakop Rivers, Namibia Type Journal Article
Year 2014 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal
Volume (down) 72 Issue Pages 34-42
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Hamutoko2014fingerprinting Serial 19
Permanent link to this record