toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Joseph, J.; Külls, C.; Arend, M.; Schaub, M.; Hagedorn, F.; Gessler, A.; Weiler, M. doi  openurl
  Title Application of a laser-based spectrometer for continuous in situ measurements of stable isotopes of soil CO2 in calcareous and acidic soils Type Journal Article
  Year 2019 Publication Soil Abbreviated Journal  
  Volume 5 Issue 1 Pages 49-62  
  Keywords  
  Abstract (up)  
  Address  
  Corporate Author Thesis  
  Publisher Copernicus Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Joseph2019application Serial 15  
Permanent link to this record
 

 
Author Hebert, B.; Baron, F.; Robin, V.; Lelievre, K.; Dacheux, N.; Szenknect, S.; Mesbah, A.; Pouradier, A.; Jikibayev, R.; Roy, R.; Beaufort, D. url  openurl
  Title Quantification of coffinite (USiO4) in roll-front uranium deposits using visible to near infrared (Vis-NIR) portable field spectroscopy Type Journal Article
  Year 2019 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 199 Issue Pages 53-59  
  Keywords Coffinite, Mineral quantification, Near infrared, Ore exploration, Portable field spectroscopy, Roll-front deposits  
  Abstract (up) Coffinite (USiO4) is a common uranium-bearing mineral of roll-front uranium deposits. This mineral can be identified by the visible near infrared (Vis-NIR) portable field spectrometers used in mining exploration. However, due to the low detection limits and associated errors, the quantification of coffinite abundance in the mineralized sandstones or sandy sediments of roll-front uranium deposits using Vis-NIR spectrometry requires a specific methodological development. In this study, the 1135 nm absorption band area is used to quantify the abundance of coffinite. This absorption feature does not interfere with NIR absorption bands of any other minerals present in natural sands or sandstones of uranium roll-front deposits. The correlation between the 1135 nm band area and coffinite content was determined from a series of spectra measured from prepared mineral mixtures. The samples were prepared with a range of weighted amounts of arenitic sands and synthetic coffinite simulating the range of uranium concentration encountered in roll-front uranium deposits. The methodology presented in this study provides the quantification of the coffinite content present in sands between 0.03 wt% to 1 wt% coffinite with a detection limit as low as 0.005 wt%. The integrated area of the 1135 nm band is positively correlated with the coffinite content of the sand in this range, showing that the method is efficient to quantify coffinite concentrations typical of roll-front uranium deposits. The regression equation defined in this study was then used as a reference to predict the amount of natural coffinite in a set of mineralized samples from the Tortkuduk uranium roll-front deposit (South Kazakhstan).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hebert_quantification_2019 Serial 184  
Permanent link to this record
 

 
Author Rosen, M.R.; Burow, K.R.; Fram, M.S. url  openurl
  Title Anthropogenic and geologic causes of anomalously high uranium concentrations in groundwater used for drinking water supply in the southeastern San Joaquin Valley, CA Type Journal Article
  Year 2019 Publication Journal of Hydrology Abbreviated Journal  
  Volume 577 Issue Pages 124009  
  Keywords California, Central Valley, Geochemistry, Groundwater San Joaquin Valley, Uranium  
  Abstract (up) Concentrations of uranium (U) \textgreater30 µg/L in groundwater are relatively uncommon in drinking water in the United States but can be of concern in those areas where complex interactions of aquifer materials and anthropogenic alterations of the natural flow regime mobilize U. High concentrations (\textgreater30 µg/L) of U in the southeastern San Joaquin Valley, California, USA, have been detected in 24 percent of 257 domestic, irrigation, and public-supply wells sampled across an approximately 110,000 km2 area. In this study we evaluated mechanisms for mobilization of U in the San Joaquin Valley proposed in previous studies, confirming mobilization by HCO3 and refuting mobilization by NO3 and we refined our understanding of the geologic sources of U to the scale of individual alluvial fans. The location of high concentrations depends on the interactions of geological U sources from fluvial fans that originate in the Sierra Nevada to the east and seepage of irrigation water that contains high concentrations of HCO3 that leaches U from the sediments. In addition, interactions with PO4 from fertilized irrigated fields may sequester U in the aquifer. Principal component analysis of the data demonstrates that HCO3 and ions associated with high total dissolved solids in the aquifer and the percentage of agriculture near the well sampled are associated with high U concentrations. Nitrate concentrations do not appear to control release of U to the aquifer. Age dating of the groundwater and generally increasing U concentrations of the past 25 years in resampled wells where irrigation is prevalent suggests that high U concentrations are associated with younger water, indicating that irrigation of fields over the past 100 years has significantly contributed to increasing concentrations and mobilizing U. In some places, the groundwater is supersaturated with uranyl-containing minerals, as would be expected in roll front deposits. In general, the interaction of natural geological sources high in U, the anthropogenically driven addition of HCO3 and possibly phosphate fertilizer, control the location and concentration of U in each individual fluvial fan, but the addition of nitrate in fertilizer does not appear control the location of high U. These geochemical interactions are complex but can be used to determine controls on anomalously high U in alluvial aquifers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ rosen_anthropogenic_2019 Serial 158  
Permanent link to this record
 

 
Author Mühr-Ebert, E.L.; Wagner, F.; Walther, C. url  openurl
  Title Speciation of uranium: Compilation of a thermodynamic database and its experimental evaluation using different analytical techniques Type Journal Article
  Year 2019 Publication Applied Geochemistry Abbreviated Journal  
  Volume 100 Issue Pages 213-222  
  Keywords  
  Abstract (up) Environmental hazards are caused by uranium mining legacies and enhanced radioactivity in utilized groundwater and surface water resources. Knowledge of uranium speciation in these waters is essential for predicting radionuclide migration and for installing effective water purification technology. The validity of the thermodynamic data for the environmental media affected by uranium mining legacies is of utmost importance. Therefore, a comprehensive and consistent database was established according to current knowledge. The uranium data included in the database is based on the NEA TDB (Guillaumont et al., 2003) and is modified or supplemented as necessary e.g. for calcium and magnesium uranyl carbonates. The specific ion interaction theory (Brönsted, 1922) is used to estimate activity constants, which is sufficient for the considered low ionic strengths. The success of this approach was evaluated by comparative experimental investigations and model calculations (PHREEQC (Parkhurst and Appelo, 1999)) for several model systems. The waters differ in pH (2.7–9.8), uranium concentration (10−9-10−4 mol/L) and ionic strength (0.002–0.2 mol/L). We used chemical extraction experiments, ESI-Orbitrap-MS and time-resolved laser-induced fluorescence spectroscopy (TRLFS) to measure the uranium speciation. The latter method is nonintrusive and therefore does not change the chemical composition of the investigated waters. This is very important, because any change of the system under study may also change the speciation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ muhr-ebert_speciation_2019 Serial 142  
Permanent link to this record
 

 
Author Ruiz, O.; Thomson, B.; Cerrato, J.M.; Rodriguez-Freire, L. url  openurl
  Title Groundwater restoration following in-situ recovery (ISR) mining of uranium Type Journal Article
  Year 2019 Publication Applied Geochemistry Abbreviated Journal  
  Volume 109 Issue Pages 104418  
  Keywords Aquifer stabilization, Ground water restoration, In-situ leach mining, In-situ recovery, Uranium  
  Abstract (up) From 1950 through the early 1980’s New Mexico accounted for roughly half of domestic uranium (U) production for the nuclear power industry and the nation’s weapon programs. Increased interest in nuclear energy has led to proposals for renewed development using both underground mining and uranium in situ recovery (ISR). When feasible, ISR greatly reduces waste generated by the mining and milling processes, however, the ability to restore ground water to acceptable quality after ISR ends is uncertain. This research investigated two methods of stabilizing an aquifer following ISR. Batch and column studies were performed to evaluate chemical and biological methods of stabilization. Columns packed with ore were first leached with an aerated NaHCO3 ground water solution to simulate ISR. Constituents present at elevated concentrations after leaching included molybdenum (Mo), selenium (Se), U, and vanadium (V). Chemical stabilization was studied by passing a phosphate (PO43-) amended solution through the ore to achieve passivation of mineral surfaces by P precipitates. Microbial stabilization was studied by passing a lactate solution through the ore to stimulate growth of anaerobic metal- and sulfate-reducing organisms to reduce U and other elements to less soluble phases. Analyses of the solids from the columns after completion of these experiments by X-ray photo electron spectroscopy (XPS) identified phosphate on samples near the column inlet of the chemically stabilized columns. Microbial populations were characterized by Illumina DNA sequencing and confirmed the presence of metal- and sulfate-reducing organisms. Neither chemical nor microbial stabilization method achieved contaminant immobilization, which is believed due to limited mixing of the stabilization solutions with the contaminated leach solutions. These results emphasize that ground water hydrodynamics, especially mixing, must be considered in aquifer restoration of soluble constituents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ruiz_groundwater_2019 Serial 153  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: