toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vushe, A.; Amutenya, M. url  openurl
  Title (down) Investigating nitrate retention capacity, elementary and mineral composition of Kalahari sandy soils at Mashare farm in Namibia, Okavango river basin Type Journal Article
  Year 2019 Publication Scientific African Abbreviated Journal  
  Volume 6 Issue Pages 00193  
  Keywords Irrigated field, Cultivated Kalahari sandy soil, Leaching, Nitrate retention capacity, Quartz mineral, Water saturated  
  Abstract Kalahari sands which cover a large part of Southern Africa and extend into Central Africa are infertile and marginal soils for intensive agriculture. Therefore, high nitrogen fertilisation rates may degrade ecosystems of rivers with catchments covered by the Kalahari sands. A study on Mashare Farm located in the Okavango River basin showed that irrigated Kalahari sandy soils had a nitrate retention capacity, which enabled the soil to resist nitrate leaching in water saturated conditions. The irrigated soils were modified by agricultural activities; hence this study investigated if uncultivated and cultivated Kalahari sand soils had similar nitrate retention properties. The elementary composition of the soils was investigated for obtaining an insight into chemical properties that may be causing the nitrate retention capacity. A permeameter was used to leach out nitrates from irrigated and uncultivated soil samples, and nitrate concentrations were measured on the leaching effluent from the permeameter. Elemental analysis was done on the cultivated and the uncultivated soil samples using a Scanning Electron Microscope, a portable X-Ray Fluorescence analyzer, and an X-Ray Diffraction machine, and the later was also used for crystalline structure analyses. Sieve analyses confirmed that the Mashare’s cultivated and uncultivated topsoils were similar, and both were similar to Botswana Kalahari topsoil. The irrigated and cultivated subsoil had a higher average nitrate retention capacity of 76% compared to 73% for the uncultivated subsoil. Both samples had the same elements, although the proportions were different. Both soil samples were dominated by a quartz mineral, but the field soil had traces of palygorskite. The presence of aluminum and transition metals outside the minerals structure, but as coatings on the quartz sand grains enhanced nitrate retention capacity properties of the Kalahari sand soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-2276 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ VUSHE2019e00193 Serial 277  
Permanent link to this record
 

 
Author Boulesteix, T.; Cathelineau, M.; Deloule, E.; Brouand, M.; Toubon, H.; Lach, P.; Fiet, N. url  openurl
  Title (down) Ilmenites and their alteration products, sinkholes for uranium and radium in roll-front deposits after the example of South Tortkuduk (Kazakhstan) Type Journal Article
  Year 2019 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 206 Issue Pages 106343  
  Keywords  
  Abstract The approximate determination of average Ra/U disequilibria in orebodies is one of the most common causes of errors in U reserve estimations. In roll-front deposits, the disequilibria are however frequently distributed following complex geometries, which must be fully understood to prevent major U reserve overestimates and costly unproductive extractive operations. The processes responsible for disruption of the radioactive equilibria and the U and Ra carriers in such complex natural systems remain poorly constrained. In this contribution, we propose an innovative approach, mixing orebody to sub-grain scale studies to unravel the distribution of U and Ra and the processes responsible for their concentration and uncoupling. Using mineral separations, gamma spectrometry and mineral-chemical analyses, we identified the Fe-Ti clusters (altered ilmenite + pyrite/marcasite) as the microsites for coffinite precipitation and Ra concentration. To understand the influence of such clusters on the distribution of U and Ra at the deposit scale, whole-rock Ra/U disequilibria were measured and mapped at a series of ten drill holes along a profile crosscutting the studied roll-front. The main Ra/U disequilibria are encountered around the mineralization in low U content zones. They are controlled by two main processes. (1) In the oxidized zones, the immobility of 230Th with respect to the U produces patches of Ra disequilibria (carried by the altered U minerals). (2) In the immediate vicinity of the roll-front, the dissolution of the mineralization produces an Ra flux trapped by the alteration products of ilmenites, as definitely confirmed by direct SIMS measurements. Such a process is responsible for the Ra disequilibria envelope located downstream of the richest ores, also known as Ra halo. The highest Ra/U ratios correspond to oxidized upstream samples, but most other high Ra/U ratios are from reduced downstream samples close to the mineralization. Such a low to medium U content envelope with high Ra/U ratios constitutes the main cause of U reserve overestimations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ boulesteix_ilmenites_2019 Serial 181  
Permanent link to this record
 

 
Author Ruiz, O.; Thomson, B.; Cerrato, J.M.; Rodriguez-Freire, L. url  openurl
  Title (down) Groundwater restoration following in-situ recovery (ISR) mining of uranium Type Journal Article
  Year 2019 Publication Applied Geochemistry Abbreviated Journal  
  Volume 109 Issue Pages 104418  
  Keywords Aquifer stabilization, Ground water restoration, In-situ leach mining, In-situ recovery, Uranium  
  Abstract From 1950 through the early 1980’s New Mexico accounted for roughly half of domestic uranium (U) production for the nuclear power industry and the nation’s weapon programs. Increased interest in nuclear energy has led to proposals for renewed development using both underground mining and uranium in situ recovery (ISR). When feasible, ISR greatly reduces waste generated by the mining and milling processes, however, the ability to restore ground water to acceptable quality after ISR ends is uncertain. This research investigated two methods of stabilizing an aquifer following ISR. Batch and column studies were performed to evaluate chemical and biological methods of stabilization. Columns packed with ore were first leached with an aerated NaHCO3 ground water solution to simulate ISR. Constituents present at elevated concentrations after leaching included molybdenum (Mo), selenium (Se), U, and vanadium (V). Chemical stabilization was studied by passing a phosphate (PO43-) amended solution through the ore to achieve passivation of mineral surfaces by P precipitates. Microbial stabilization was studied by passing a lactate solution through the ore to stimulate growth of anaerobic metal- and sulfate-reducing organisms to reduce U and other elements to less soluble phases. Analyses of the solids from the columns after completion of these experiments by X-ray photo electron spectroscopy (XPS) identified phosphate on samples near the column inlet of the chemically stabilized columns. Microbial populations were characterized by Illumina DNA sequencing and confirmed the presence of metal- and sulfate-reducing organisms. Neither chemical nor microbial stabilization method achieved contaminant immobilization, which is believed due to limited mixing of the stabilization solutions with the contaminated leach solutions. These results emphasize that ground water hydrodynamics, especially mixing, must be considered in aquifer restoration of soluble constituents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ruiz_groundwater_2019 Serial 153  
Permanent link to this record
 

 
Author Hall, S.M.; Gosen, B.S.V.; Paces, J.B.; Zielinski, R.A.; Breit, G.N. url  openurl
  Title (down) Calcrete uranium deposits in the Southern High Plains, USA Type Journal Article
  Year 2019 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 109 Issue Pages 50-78  
  Keywords Calcrete, Carnotite, Finchite, Geochemistry, Uranium, Vanadium  
  Abstract The Southern High Plains (SHP) is a new and emerging U.S. uranium province. Here, uranyl vanadates form deposits in Pliocene to Pleistocene sandstone, dolomite, and limestone. Fifteen calcrete uranium occurrences are identified; two of these, the Buzzard Draw and Sulfur Springs Draw deposits, have combined in-place resources estimated at about 4 million pounds of U3O8. Ore minerals carnotite and finchite are hosted in dolomite at the Sulfur Springs Draw deposit, with accessory fluorite, celestine, smectite/illite, autunite, and strontium carbonate. Host carbonate at the Sulfur Springs Draw deposit is ∼190 ka and mineralization mobilized as recently as 3.8 ka. Ash collected near the deposit is 631 ka and erupted from the Yellowstone caldera complex. The Triassic Dockum Group that contains sandstone-hosted uranium deposits throughout the region and underlies the SHP is a potential source for uranium and vanadium. Regional uplift and dissection reintroduced oxygenated groundwater into the Dockum Group, mobilizing uranium. Additional uranium may have been contributed to groundwater by weathering of volcanic ash in Pliocene and Pleistocene host rocks. The locations of the uranium occurrences are mostly in modern drainage systems in the southeast portion of the SHP. Modelling of modern groundwater in the SHP carried out in a parallel study shows that a single fluid could form carnotite through evaporation, and that fluids of the requisite composition are more prevalent in the southern portion of the SHP. The southeastern portion of the SHP hosts more uranium occurrences due to a variety of factors including (1) upward transport of groundwater and connectivity between source and host rock, (2) higher uranium and vanadium content of groundwater, (3) higher rates of groundwater recharge in this region to drive the mineralizing system, and (4) shallower groundwater facilitating surface evaporation. Ongoing erosion of host rocks challenges preservation of deposits and may limit their size.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hall_calcrete_2019 Serial 124  
Permanent link to this record
 

 
Author Joseph, J.; Külls, C.; Arend, M.; Schaub, M.; Hagedorn, F.; Gessler, A.; Weiler, M. doi  openurl
  Title (down) Application of a laser-based spectrometer for continuous in situ measurements of stable isotopes of soil CO2 in calcareous and acidic soils Type Journal Article
  Year 2019 Publication Soil Abbreviated Journal  
  Volume 5 Issue 1 Pages 49-62  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Copernicus Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Joseph2019application Serial 15  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: