toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Jin, Z.; Külls, C. doi  openurl
  Title FDM based OA-ICOS for high accuracy 13C quantification in gaseous CO2 Type Journal Article
  Year 2020 Publication Earth and Environmental Science Abbreviated Journal EES  
  Volume 446 Issue 3 Pages 032061  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title IOP Conference Series Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Jin2020fdm Serial 16  
Permanent link to this record
 

 
Author (up) Jroundi, F.; Descostes, M.; Povedano-Priego, C.; Sánchez-Castro, I.; Suvannagan, V.; Grizard, P.; Merroun, M.L. url  openurl
  Title Profiling native aquifer bacteria in a uranium roll-front deposit and their role in biogeochemical cycle dynamics: Insights regarding in situ recovery mining Type Journal Article
  Year 2020 Publication Science of The Total Environment Abbreviated Journal  
  Volume 721 Issue Pages 137758  
  Keywords Bacterial diversity, Bioremediation, In-situ recovery, Natural attenuation, Network analysis, Uranium  
  Abstract A uranium-mineralized sandy aquifer, planned for mining by means of uranium in situ recovery (U ISR), harbors a reservoir of bacterial life that may influence the biogeochemical cycles surrounding uranium roll-front deposits. Since microorganisms play an important role at all stages of U ISR, a better knowledge of the resident bacteria before any ISR actuations is essential to face environmental quality assessment. The focus here was on the characterization of bacteria residing in an aquifer surrounding a uranium roll-front deposit that forms part of an ISR facility project at Zoovch Ovoo (Mongolia). Water samples were collected following the natural redox zonation inherited in the native aquifer, including the mineralized orebody, as well as compartments located both upstream (oxidized waters) and downstream (reduced waters) of this area. An imposed chemical zonation for all sensitive redox elements through the roll-front system was observed. In addition, high-throughput sequencing data showed that the bacterial community structure was shaped by the redox gradient and oxygen availability. Several interesting bacteria were identified, including sulphate-reducing (e.g. Desulfovibrio, Nitrospira), iron-reducing (e.g. Gallionella, Sideroxydans), iron-oxidizing (e.g. Rhodobacter, Albidiferax, Ferribacterium), and nitrate-reducing bacteria (e.g. Pseudomonas, Aquabacterium), which may also be involved in metal reduction (e.g. Desulfovibrio, Ferribacterium, Pseudomonas, Albidiferax, Caulobacter, Zooglea). Canonical correspondence analysis (CCA) and co-occurrence patterns confirmed strong correlations among the bacterial genera, suggesting either shared/preferred environmental conditions or the performance of similar/complementary functions. As a whole, the bacterial community residing in each aquifer compartment would appear to define an ecologically functional ecosystem, containing suitable microorganisms (e.g. acidophilic bacteria) prone to promote the remediation of the acidified aquifer by natural attenuation. Assessing the composition and structure of the aquifer’s native bacteria is a prerequisite for understanding natural attenuation and predicting the role of bacterial input in improving ISR efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jroundi_profiling_2020 Serial 177  
Permanent link to this record
 

 
Author (up) Krüger, N.; Külls, C.; Bruggeman, A.; Eliades, M.; Christophi, C.; Rigas, M.; Eracleous, T. openurl 
  Title Groundwater recharge estimates with soil isotope profiles-is there a bias on coarse-grained hillslopes? Type Conference Article
  Year 2020 Publication EGU General Assembly Conference Abstracts Abbreviated Journal  
  Volume Issue Pages 9840  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Krueger2020groundwater Serial 42  
Permanent link to this record
 

 
Author (up) Lartigue, J.E.; Charrasse, B.; Reile, B.; Descostes, M. url  openurl
  Title Aqueous inorganic uranium speciation in European stream waters from the FOREGS dataset using geochemical modelling and determination of a U bioavailability baseline Type Journal Article
  Year 2020 Publication Chemosphere Abbreviated Journal  
  Volume 251 Issue Pages 126302  
  Keywords Bioavailable fraction, Geochemical mapping / baseline, Modelling, Speciation, Stream water, Uranium  
  Abstract The concentration of the bioavailable uranium fraction (Ubio) at the European scale was deduced by geochemical modelling considering several definitions found in the literature and the FOREGS European stream waters geochemical atlas dataset to produce a Ubio baseline. A sensitivity analysis was performed using three thermodynamic databases. We also investigated the link between total dissolved uranium (Uaq) concentrations, speciation and global stream water chemistry on the one hand, and the lithology and ages of the surrounding rocks on the other. The more U-enriched the stream sediments or rock type contexts are, which tends to be the case with rocks containing silicates (4.1 mg/kg), the less U-concentrated the stream waters are (0.15 μg/L). Sedimentary rocks lead to slightly higher Uaq concentrations (0.34 μg/L) even if the concentration in sediment (Used) is relatively low (1.6 mg/kg). This trend is reversed for Ubio, with higher concentrations in a crystalline context. The mean estimated Ubio value ranges from 1.5.10−3 to 65.3 ng/L and can fluctuate by 3 orders of magnitude depending on the considered definition as opposed to by 2 orders of magnitude accountable to differences between thermodynamic databases. The classification of the water in relation to the two surrounding rock lithologies makes it possible to reduce the mean variability for the Ubio concentrations. Irrespective of the definition of Ubio considered, in 59% of cases the Ubio fraction represents less than 1% of Uaq. Several threshold values relating to Ubio were proposed, assuming knowledge only of the aqueous concentrations of the major elements and Uaq.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lartigue_aqueous_2020 Serial 141  
Permanent link to this record
 

 
Author (up) Mahindawansha, A.; Külls, C.; Kraft, P.; Breuer, L. url  doi
openurl 
  Title Investigating unproductive water losses from irrigated agricultural crops in the humid tropics through analyses of stable isotopes of water Type Journal Article
  Year 2020 Publication Hydrology and Earth System Sciences Abbreviated Journal  
  Volume 24 Issue 7 Pages 3627-3642  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Copernicus GmbH Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved yes  
  Call Number THL @ christoph.kuells @ Mahindawansha2020investigating Serial 14  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: