|   | 
Details
   web
Records
Author Zhou, Y.; Li, G.; Xu, L.; Liu, J.; Sun, Z.; Shi, W.
Title Uranium recovery from sandstone-type uranium deposit by acid in-situ leaching – an example from the Kujieertai Type Journal Article
Year 2020 Publication Hydrometallurgy Abbreviated Journal
Volume 191 Issue Pages (down) 105209
Keywords Acid in-situ leaching, Sandstone-type uranium deposit, Uranium deportment in the ore, Uranium recovery, Water-rock interaction
Abstract The factors influencing uranium recovery in water-rock systems during acid in-situ leaching (ISL) were studied at the Kujieertai uranium deposit in Xinjiang. Using an ISL unit, a field leach trial (FLT) had been carried out to test the sequential effects of a leaching solution without oxidant (H2SO4 solution 4–8 g/L) and a leaching solution with oxidant (H2SO4 3–7 g/L, and Fe (III) 2–6 g/L). The observation of the leaching process revealed clearly defined stages of uranium release from the solid mineral to solution. Uranium mobilization from solid mineral into solution can be described in four stages. At the beginning of the acid ISL process, there was no oxidant to be added to the leaching solution and the desorption of hexavalent uranyl ions in the open pores, as well as dissolution of hexavalent uranium minerals, led to a short-term peak in the pregnant solution, which happened while pH decreased from about 5.3 to 2.62. Following the depletion of the adsorbed hexavalent uranium and a decline in uranium dissolution intensity, the addition of Fe(III) facilitated the oxidation of tetravalent uranium, which enabled intensive uranium mobilization again. During this process, the dissolution of uranium had a strong positive correlation with the reduction of Fe(III) and Eh in the leach solution. Beside hydrochemical factors, the deportment of uranium was also an important factor affecting uranium recovery. Uranium located in the open pores can be completely exposed to the solution and the mobilization intensity was significantly affected by hydrogeochemical conditions; but the uranium present in microfissures and in the ore matrix could not be fully exposed to the solution, so, their dissolution intensity was primarily controlled by corrosion and permeability of the ore. In general, the hydrogeochemical conditions and the deportment of uranium were the external and internal factors that significantly affected the dissolution and recovery of uranium in the early and middle stages of the FLT. However, in the latest stages, due to uranium depletion, enhancing the chemical potential of the leaching solution, specifically acidity and/or the amount of oxidant, had little improvement on uranium recovery.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ zhou_uranium_2020 Serial 205
Permanent link to this record
 

 
Author Christofi, C.; Bruggeman, A.; Külls, C.; Constantinou, C.
Title Isotope hydrology and hydrogeochemical modeling of Troodos Fractured Aquifer, Cyprus: The development of hydrogeological descriptions of observed water types Type Journal Article
Year 2020 Publication Applied Geochemistry Abbreviated Journal
Volume 123 Issue Pages (down) 104780
Keywords Isotope hydrology, Hydrogeochemical modelling, Hydrochemistry, Kargiotis, Troodos
Abstract The origin of groundwater recharge and subsequent flow paths are often difficult to establish in fractured, multi-lithological, and highly compartmentalized aquifers such as the Troodos Fractured Aquifer (TFA). As the conjunctive use of stable isotopes and hydrogeochemical data provides additional information, we established a monitoring network for stable isotopes in precipitation in Cyprus. The local meteoric water line, altitude effect and seasonal variation of stable isotopes in precipitation are derived from monitoring data. Stable isotopes and hydrogeochemical data are combined to model water-rock interactions and groundwater evolution along a complete ophiolite sequence. As a result a generic hydrogeologic description for the observed water types is developed. Isotope hydrology was applied in conjunction with hydrogeochemical modelling in Kargiotis Watershed, a major north-south transect of the TFA. PHREEQC was used for hydrogeochemical modelling to establish generic descriptions for observed water types. Mean precipitation-weighted values from 16 monitoring stations were used to calculate the Local Meteoric Water Line (LMWL), which was found to be equal to δ2H = (6.58 ± 0.13)*δ18O + (12.64 ± 0.91). A general decrease of 1.22‰ for δ2H and 0.20‰ for δ18O in precipitation was calculated per 100 m altitude. A generic groundwater evolution path was established: 1. Na/MgClHCO3, 2. MgHCO3, 3. Ca/MgHCO3, 4. Ca/MgNaHCO3, 4a. MgNa/CaHCO3/Cl, 5. NaMg/CaHCO3/Cl, 6. NaHCO3, 7. Na/MgHCO3SO4, 8. NaSO4Cl/HCO3. Hydrogeologic descriptions, consisting of groundwater origin, flow path and possible active water-rock processes, have been realised for the observed water types. The first two water types occur in serpentine and ultramafic-gabbro springs. Type 3 waters represent early stages of recharge and/or short flow paths, in gabbro whereas types 4 and 5 are typical for further percolating waters in gabbro and diabase. Water types 6 and 7 occur both in diabase and in the basal group and represent the regional flow. Water type 8 is the end member of regional, upwelling groundwater in the basal group. The presented descriptions and methods have practical applications in groundwater exploration, characterization, and protection. The methodology can be applied in other complex aquifer systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language english Summary Language english Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Cyprus Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Christofi2020104780 Serial 76
Permanent link to this record
 

 
Author Gardiner, J.; Thomas, R.B.; Phan, T.T.; Stuckman, M.; Wang, J.; Small, M.; Lopano, C.; Hakala, J.A.
Title Utilization of produced water baseline as a groundwater monitoring tool at a CO2-EOR site in the Permian Basin, Texas, USA Type Journal Article
Year 2020 Publication Applied Geochemistry Abbreviated Journal
Volume 121 Issue Pages (down) 104688
Keywords CO storage, Enhanced oil recovery, Geochemical baseline, Groundwater monitoring, Produced water, Solubility trapping
Abstract Carbon dioxide (CO2) enhanced oil recovery (EOR) provides a pathway for economic reuse and storage of CO2, a greenhouse gas. One challenge with this practice is ensuring CO2 injection does not result in target reservoir fluids migrating into overlying shallow (\textless1000 m) groundwater formations. Effective monitoring for leakage from storage formations could involve measuring sensitive chemical indicators in overlying groundwater units and within the producing formation itself for evidence of deviation from an initial state. In this study, produced waters and overlying groundwaters were monitored over a five-year period to evaluate which geochemical signals may be useful to ensure that oilfield produced waters did not impact overlying groundwaters. During this five-year period, a mature carbonate oil reservoir in the Permian Basin transitioned from a waterflooding operation to a water-alternating-gas injection (WAG), in which the formation was flooded with CO2 and various mixtures of produced water. Significant increases in dissolved inorganic constituents [alkalinity, TDS, Na+, Cl−, SO42−] were observed in produced waters following CO2 injection; however, carbonate reservoir dissolution-precipitation reactions appear to be minimal and injected CO2 appears to be stored via solubility trapping. Although there are statistically significant geochemical variations following CO2 injection, applying isometric log-ratios to certain parameters establishes a narrow range for post-CO2 injection produced waters. This narrow range can be considered a baseline for post-CO2 injection produced waters; this baseline can be utilized to monitor overlying local groundwaters for produced water intrusion. Additionally, certain parameters [Na+, Ca2+, K+, Cl−, alkalinity, and TDS] display large concentration disparities between produced water and overlying groundwaters; these parameters would be sensitive indicators of produced water intrusion into overlying groundwaters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ gardiner_utilization_2020 Serial 171
Permanent link to this record
 

 
Author Christofi, C.; Bruggeman, A.; Külls, C.; Constantinou, C.
Title Hydrochemical evolution of groundwater in gabbro of the Troodos Fractured Aquifer. A comprehensive approach Type Journal Article
Year 2020 Publication Applied Geochemistry Abbreviated Journal
Volume 114 Issue Pages (down) 104524
Keywords geochemistry
Abstract
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Christofi2020hydrochemical Serial 13
Permanent link to this record
 

 
Author Su, X.; Liu, Z.; Yao, Y.; Du, Z.
Title Petrology, mineralogy, and ore leaching of sandstone-hosted uranium deposits in the Ordos Basin, North China Type Journal Article
Year 2020 Publication Ore Geology Reviews Abbreviated Journal
Volume 127 Issue Pages (down) 103768
Keywords Geochemical composition, leach mining, Mineralogy, Ordos Basin, Sandstone-hosted uranium deposit
Abstract The Nalinggou–Daying uranium metallogenic belt is situated at the northern Ordos Basin, China. Petrographical, mineralogical and geochemical techniques were used to study the ore-bearing sandstones and host rocks in the Nalinggou–Daying uranium metallogenic belt. The present study shows that uranium minerals, i.e., coffinite, pitchblende, and brannerite, are mostly disseminated around pyrite and detrital particles. The ore-bearing sandstones are enriched in organic matter, with which this reductive environment influenced uranium leaching. The carbonate concentration of the uranium ores is markedly higher than that of the host rocks, and intense carbonatization occurs in the ore-bearing sandstones. In this case, the usage of the classical in-situ leach uranium mining technique by injecting H2SO4 + H2O2 solution produces calcium sulfate precipitate, which can lead to blocking of the ore-bearing strata. For this reason, laboratory and field uranium mining tests were conducted using CO2 + O2 in-situ leaching technology and were demonstrated to be successful, illustrating that this approach is technically feasible. Inhibiting ore bed blockage and increasing the amount of injected O2 are important for uranium leaching in this setting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ su_petrology_2020 Serial 120
Permanent link to this record