|   | 
Details
   web
Records
Author (up) Dąbrowska, J.; Orellana, A.E.M.; Kilian, W.; Moryl, A.; Cielecka, N.; Michałowska, K.; Policht-Latawiec, A.; Michalski, A.; Bednarek, A.; Włóka, A.
Title Between flood and drought: How cities are facing water surplus and scarcity Type Journal Article
Year 2023 Publication Journal of Environmental Management Abbreviated Journal
Volume 345 Issue Pages 118557
Keywords Urban ecosystem management, Urban floods, Urban droughts, Nature-based solutions, Climate change, Urban resilience
Abstract Droughts and floods are weather-related hazards affecting cities in all climate zones and causing human deaths and material losses on all inhabited continents. The aim of this article is to review, analyse and discuss in detail the problems faced by urban ecosystems due to water surplus and scarcity, as well as the need of adaptation to climate change taking into account the legislation, current challenges and knowledge gaps. The literature review indicated that urban floods are much more recognised than urban droughts. Amongst floods, flash floods are currently the most challenging, which by their nature are difficult to monitor. Research and adaptation measures related to water-released hazards use cutting-edge technologies for risk assessment, decision support systems, or early warning systems, among others, but in all areas knowledge gaps for urban droughts are evident. Increasing urban retention and introducing Low Impact Development and Nature-based Solutions is a remedy for both droughts and floods in cities. There is the need to integrate flood and drought disaster risk reduction strategies and creating a holistic approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Dabrowska2023118557 Serial 227
Permanent link to this record
 

 
Author (up) Gimeno, M.J.; Tullborg, E.-L.; Nilsson, A.-C.; Auqué, L.F.; Nilsson, L.
Title Hydrogeochemical characterisation of the groundwater in the crystalline basement of Forsmark, the selected area for the geological nuclear repositories in Sweden Type Journal Article
Year 2023 Publication Journal of Hydrology Abbreviated Journal
Volume 624 Issue Pages 129818
Keywords Crystalline bedrock, Deep geological repository, Glacial meltwater intrusion, Groundwater mixing, Hydrogeochemical model, Nuclear waste disposal
Abstract Numerous groundwater analyses from the crystalline bedrock in the Forsmark area have been performed between 2002 and 2019, together with thorough geological, geophysical, and hydrogeological studies, within the site investigations carried out by the Swedish Nuclear Fuel and Waste Management Company. The groundwater samples have been taken from boreholes down to ≈ 1000 m and the analysis include major- and trace-elements, stable and radiogenic isotopes, gases and microbes. The chemical and isotopic composition of these groundwaters evidences the presence of non-marine brackish to saline groundwaters with very long residence times (many hundreds of thousands of years) and a series of complex mixing events resulting from the recharge of different waters over time: glacial meltwaters, probably from different glaciations of which the latest culminated some 20,000 years ago, and marine waters from the Baltic starting some 7000 years ago. Later, meteoric water and present Baltic Sea water have recharged in different parts of the upper 100 m. These mixing events have also triggered chemical and microbial reactions that have conditioned some of the important groundwater parameters and, together with the structural complexity of the area, they have promoted a heterogeneous distribution of groundwater compositions in the bedrock. Due to these evident differences in chemistry, residence time and origin of the groundwater, several groundwater types were defined in order to facilitate the visualisation and communication. The differentiation (linked to the paleohydrological history of the area) was based on Cl concentration, Cl/Mg ratio (marine component), and δ18O value (glacial component). The work presented in this paper increases the understanding of the groundwater evolution in fractured and compartmentalised aquifers where mixing processes are the most important mechanisms. The model proposed to characterise the present groundwater system of the Forsmark area will also help to predict the future hydrogeochemical behaviour of the groundwater system after the construction of the repositories for the nuclear wastes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-1694 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ gimeno_hydrogeochemical_2023 Serial 137
Permanent link to this record
 

 
Author (up) Hall, S.M.; Gosen, B.S.V.; Zielinski, R.A.
Title Sandstone-hosted uranium deposits of the Colorado Plateau, USA Type Journal Article
Year 2023 Publication Ore Geology Reviews Abbreviated Journal
Volume 155 Issue Pages 105353
Keywords Colorado, Plateau, Uranium, Vanadium
Abstract More than 4,000 sandstone-hosted uranium occurrences host over 1.2 billion pounds of mined and in situ U3O8 throughout the Colorado Plateau. Most of the resources are in two distinct mineral systems with deposits hosted in the Triassic Chinle and Jurassic Morrison Formations. In the Chinle mineral system, base metal sulfides typically accompany mineralization. The Morrison mineral system is characterized by V/U ratios up to 20. The uranium source was likely volcanic ash preserved as bentonitic mudstones in the Brushy Basin Member of the Morrison Formation, and lithic volcanic clasts, ash shards, and bentonitic clay in the lower part of the Chinle Formation. Vanadium originated from two possible sources: iron–titanium oxides that are extensively altered in bleached rock near deposits or from similar minerals in variably bleached red beds interbedded with and beneath the Morrison. In Chinle-hosted deposits, in addition to volcanic ash, a contributing source of both vanadium and uranium is proposed here for the first time to be underlying red beds in the Moenkopi and Cutler Formations that have undergone a cycle of reddening-bleaching-reoxidation. Transport in both systems was likely in groundwater through the more permeable sandstones and conglomerate units. The association of uranium minerals with carbonate and more rarely apatite, suggests that transport of uranium was as a carbonate or phosphate complex. The first comprehensive examination of paleoclimate, paleotopography, and subsurface structure of aquifers coupled with analysis of the geochronology of deposits suggests that that there were distinct pulses of uranium mineralization/redistribution during the period from about 259 Ma to 12 Ma when oxidized mineralizing fluids were intermittently rejuvenated in the Plateau in response to changes in tectonic regime and climate. Multiple lines of evidence indicate that deposits formed at ambient temperatures of about 25 °C to no greater than about 140 °C. In both systems, deposits formed where groundwater flow slowed and was subject to evaporative concentration. Stagnant conditions allowed for prolonged interaction of U- and V-enriched groundwater with ferrous iron-bearing reductants, such as illite and iron–titanium oxides, and more rarely organic material such as plant debris. Paragenetically late in the sequence, reducing fluids introduced additional organic matter to some deposits. Reducing fluids and introduced organic matter (now amorphous and altered by radiolysis) may originate from regional petroleum systems where peak oil and gas generation was from ∼ 82 to ∼ 5 Ma. Our novel analysis indicates that these reducing fluids bleached rock and protected affected deposits from remobilization during exposure and weathering that followed uplift of the Plateau (∼80 to 40 Ma).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hall_sandstone-hosted_2023 Serial 111
Permanent link to this record
 

 
Author (up) Hayes-Rich, E.; Levy, J.; Hayes-Rich, N.; Lightfoot, D.; Gauthier, Y.
Title Searching for hidden waters: The effectiveness of remote sensing in assessing the distribution and status of a traditional, earthen irrigation system (khettara) in Morocco Type Journal Article
Year 2023 Publication Journal of Archaeological Science: Reports Abbreviated Journal
Volume 51 Issue Pages 104175
Keywords Remote sensing, Satellite imagery, , Morocco, Traditional irrigation, Archaeology, Water management
Abstract This paper presents the results of a multi-year, interdisciplinary project that aimed to assess the holistic status of the khettara system in Morocco. The khettara (also known as qanat) is a traditional, earthen water management system. Historically the system was used for settlement in regions without access to reliable surface water. It is both a world and local heritage structure, found in rural and urban regions throughout 46 countries. Recent evaluations of this traditional system have advocated for its preservation and use in arid and semi-arid regions, as modern technologies (pump wells, industrial dams, drip irrigation, etc.) have proven to be unsustainable. This project evaluates remote sensing as a tool for assessing the distribution and status of the khettara in Morocco. The results of this project demonstrate that (1) the khettara system played a large role in the historic settlement of arid and semi-arid regions, and (2) the system continues to be an important part of agriculture and life in many oases across Morocco.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-409x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Hayesrich2023104175 Serial 256
Permanent link to this record
 

 
Author (up) Hdeib, R.; Aouad, M.
Title Rainwater harvesting systems: An urban flood risk mitigation measure in arid areas Type Journal Article
Year 2023 Publication Water Science and Engineering Abbreviated Journal
Volume 16 Issue 3 Pages 219-225
Keywords Rainwater harvesting, Urban floods, Flood map, Hydrodynamic model, Built environment, Arid areas
Abstract Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a two-dimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-2370 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Hdeib2023219 Serial 242
Permanent link to this record