|   | 
Details
   web
Records
Author Kurmanseiit, M.B.; Tungatarova, M.S.; Royer, J.-J.; Aizhulov, D.Y.; Shayakhmetov, N.M.; Kaltayev, A.
Title Streamline-based reactive transport modeling of uranium mining during in-situ leaching: Advantages and drawbacks Type Journal Article
Year 2023 Publication Hydrometallurgy Abbreviated Journal
Volume 220 Issue Pages 106107
Keywords (up) 3D modeling, In-situ leaching, Reactive transport model, Streamlines, Uranium recovery
Abstract Reactive transport modeling is known to be computationally intensive when applied to 3D problems. Transforming sequential computing on the computer processor units (CPU) into parallelized computation on the high-performance parallel graphic processor units (GPU) is a classical approach to increasing computational performance. Another complementary approach is to decompose a complex 3D modeling problem into a set of simpler 1D problems using streamline approaches which can be easily parallelized, therefore reducing computation time. This paper investigates solutions to the equations governing dissolution and transport using streamlines coupled with a parallelization approach. In addition, an analytical solution to the dissolution and transfer equations of uranium describing the In-Situ Leaching (ISL) mining recovery is found using an approximation series to the 2nd order. The analytical solution is compared to the 1D numerical resolution along the streamlines and to the 3D simulation results superimposed on the streamline. Both approaches give similar results with a relative error of \textless2 % (2%). The proposed methodology is then applied to a case study in which the classical 3D resolution is compared to the newly suggested streamline solution, demonstrating that the streamline approach increases computational performances by a factor ranging from hundred to thousand depending on the complexity of the grid-block model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ kurmanseiit_streamline-based_2023 Serial 190
Permanent link to this record
 

 
Author Liu, Z.; Tan, K.; Li, C.; Li, Y.; Zhang, C.; Song, J.; Liu, L.
Title Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang Type Journal Article
Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal
Volume 55 Issue 4 Pages 1476-1484
Keywords (up) Acid in situ leaching of uranium, Pollution evolution, Sulfate elimination, Sulfur isotopes analysis
Abstract Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%–48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1738-5733 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ liu_geochemical_2023 Serial 192
Permanent link to this record
 

 
Author Liu, Z.; Li, C.; Tan, K.; Li, Y.; Tan, W.; Li, X.; Zhang, C.; Meng, S.; Liu, L.
Title Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data Type Journal Article
Year 2023 Publication Science of The Total Environment Abbreviated Journal
Volume 865 Issue Pages 161033
Keywords (up) Acid in situ leaching, Geochemical and isotopic tracing, Groundwater contamination, Natural attenuation, Uranium post-mining
Abstract Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42−, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from −0.07 ‰ to 0.09 ‰ in the post-mining site and from −1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994–0.9997 for uranium and 1.0032–1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ liu_study_2023 Serial 155
Permanent link to this record
 

 
Author Alexander, A.C.; Ndambuki, J.M.
Title Impact of mine closure on groundwater resource: Experience from Westrand Basin-South Africa Type Journal Article
Year 2023 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal
Volume 131 Issue Pages 103432
Keywords (up) Acid mine drainage, Groundwater quality, Mine closure, Spatio-temporal variation, Westrand Basin
Abstract The mining sector is at the edge of expanding to cater for natural resources that are much needed for technological development and manufacturing. Mushrooming of mines will consequently increase the number of mines closure. Moreover, mines closure have adverse impact on the environment at large and specifically on water resources. This study analyses historical groundwater quality parameters in mine intensive basin of Westrand Basin (WRB) to understand the status of groundwater quality in relation to mining activities and mine closure. Geographic information system (GIS) was used to map the spatio-temporal variation of groundwater quality in the basin and groundwater quality index (GQI) to evaluate its status. The coefficient of variation (CV) was applied to understand the stability of groundwater quality after the mine closure. Results indicated unstable and altered trend with increasing levels of acidity and salts concentration around the mines vicinity following the mine closure. The resultant maps indicated a significant deterioration of groundwater quality around the WRB with concentrations decreasing downstream. Obtained average GQI for the study period of 1996–2015 suggested a moderate groundwater quality at a range of GQI = 64–73. The CV indicated varying water quality at CV \textgreater 30% suggesting presence of source of contamination. Observed groundwater quality trends in Westrand basin suggested that mines closure present potential threat on groundwater quality and thus, a need for a robust mine closure plan and implementation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1474-7065 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ alexander_impact_2023 Serial 134
Permanent link to this record
 

 
Author Weerahewa, J.; Timsina, J.; Wickramasinghe, C.; Mimasha, S.; Dayananda, D.; Puspakumara, G.
Title Ancient irrigation systems in Asia and Africa: Typologies, degradation and ecosystem services Type Journal Article
Year 2023 Publication Agricultural Systems Abbreviated Journal
Volume 205 Issue Pages 103580
Keywords (up) Agriculture, Climate change, Hydrology, Village tank cascade system, Tank irrigation, Watershed
Abstract CONTEXT Ancient irrigation systems (AISs) have been providing a multitude of ecosystem services to rural farming and urban communities in Asia and Africa, especially in arid and semi-arid climatic areas with low rainfall. Many AISs, however have now been degraded. A systematic analysis of AISs on their typologies, causes of degradation, and their ecosystem services is lacking. OBJECTIVE The objective of this review was to synthesize the knowledge on AISs on their typologies, status and causes of degradation, ecosystem services and functions, and identify gaps in research in Asia and Africa. METHOD A critical review of peer-reviewed journal papers, conference and workshop proceedings, book chapters, grey literature, and country reports was conducted. Qualitative and quantitative information from journal papers were used to conceptualize the typologies and analyze the status and causes of degradation, and ecosystems services and functions provided by the AISs. RESULTS AND CONCLUSION Based on the review, we classified AISs into three groups by source of irrigation water: Rainwater harvesting system (RHS) with small reservoirs, ground water based system, and floodwater based system. The RHSs, which used to receive reliable rainfall and managed by well cohesive social organizations for their maintenance and functioning in past, have now been silting due to extreme rainfall pattern and breakdown of the cohesive organizations in recent decades. In ground water based systems, indiscriminate development of deep tube wells causing siltation of channels has been a major challenge. In floodwater irrigation systems, irregular rainfall in the highlands and the breakage of irrigation structures by destructive floods were the main causes of degradation. Lack of maintenance and increased soil erosion, inadequate skilled manpower, and declining support from the government for repair and maintenance were the main causes of degradation of all AISs. The main ecosystem service provided by all AISs is water for agriculture. In tank- and pond-based systems, fish farming is also practiced. Tank irrigation systems provide various types of provisioning, regulatory, cultural and supporting services, especially in India and Sri Lanka. Ground water based systems provide water for domestic purposes and various cultural services. Floodwater based systems provide water for power generation and wildlife habitat maintenance and help in flood control. SIGNIFICANCE The knowledge generated through the review provide evidence-based information, and help aware governments, private sectors and development agencies for improved policy planning and decision making, and prioritizing the restoration, rehabilitation, and management of various AISs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Weerahewa2023103580 Serial 275
Permanent link to this record