|   | 
Details
   web
Records
Author Tisherman, R.A.; Rossi, R.J.; Shonkoff, S.B.C.; DiGiulio, D.C.
Title Groundwater uranium contamination from produced water disposal to unlined ponds in the San Joaquin Valley Type Journal Article
Year 2023 Publication Science of The Total Environment Abbreviated Journal
Volume (down) 904 Issue Pages 166937
Keywords Groundwater, Oil & gas, Produced water, San Joaquin Valley, Uranium
Abstract In the southern San Joaquin Valley (SJV) of California, an agriculturally productive region that relies on groundwater for irrigation and domestic water supply, the infiltration of produced water from oil reservoirs is known to impact groundwater due to percolation from unlined disposal ponds. However, previously documented impacts almost exclusively focus on salinity, while contaminant loadings commonly associated with produced water (e.g., radionuclides) are poorly constrained. For example, the infiltration of bicarbonate-rich produced waters can react with sediment-bound uranium (U), leading to U mobilization and subsequent transport to nearby groundwater. Specifically, produced water infiltration poses a particular concern for SJV groundwater, as valley-fill sediments are well documented to be enriched in geogenic, reduced U. Here, we analyzed monitoring well data from two SJV produced water pond facilities to characterize U mobilization and subsequent groundwater contamination. Groundwater wells installed within 2 km of the facilities contained produced water and elevated levels of uranium. There are \textgreater400 produced water disposal pond facilities in the southern SJV. If our observations occur at even a fraction of these facilities, there is the potential for widespread U contamination in the groundwaters of one of the most productive agricultural regions in the world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ tisherman_groundwater_2023 Serial 159
Permanent link to this record
 

 
Author Musy, S.; Purtschert, R.
Title Reviewing 39Ar and 37Ar underground production in shallow depths with implications for groundwater dating Type Journal Article
Year 2023 Publication Science of The Total Environment Abbreviated Journal
Volume (down) 884 Issue Pages 163868
Keywords Subsurface production, Argon-39, Argon-37, Muons, Isotope hydrology, Tracers
Abstract Argon-37 (37Ar) and Argon-39 (39Ar) are used for groundwater dating on timescales from weeks to centuries. For both isotopes, the quantification of underground sources is essential to accurately infer water residence times from sampled dissolved activities. Subsurface production resulting from interactions with neutrons from the natural radioactivity in rocks and with primary cosmogenic neutrons has been known for a long time. More recently, the capture of slow negative muons and reactions with muon-induced neutrons were documented for 39Ar subsurface production in the context of underground particle detectors (e.g. for Dark Matter research). However, the contribution from these particles was never considered for groundwater dating applications. Here, we reevaluate the importance of all potential depth-related production channels at depth ranges relevant for 39Ar groundwater dating [0 − 200 meters below the surface (m.b.s)]. The production of radioargon by muon-induced processes is considered in this depth range for the first time. The uncertainty on the total depth-dependent production rate is estimated with Monte Carlo simulations assuming a uniform distribution of the parameter uncertainties. This work aims to provide a comprehensive framework for interpreting 39Ar activities in terms of groundwater residence times and for exposure age dating of rocks. The production of 37Ar is also addressed since this isotope is relevant as a proxy for 39Ar production, for the timing of river-groundwater exchanges, and in the context of on-site inspections (OSI) within the verification framework of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In this perspective, we provide an interactive web-based application for the calculation of 37Ar and 39Ar production rates in rocks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Musy2023163868 Serial 217
Permanent link to this record
 

 
Author Liu, Z.; Li, C.; Tan, K.; Li, Y.; Tan, W.; Li, X.; Zhang, C.; Meng, S.; Liu, L.
Title Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data Type Journal Article
Year 2023 Publication Science of The Total Environment Abbreviated Journal
Volume (down) 865 Issue Pages 161033
Keywords Acid in situ leaching, Geochemical and isotopic tracing, Groundwater contamination, Natural attenuation, Uranium post-mining
Abstract Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42−, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from −0.07 ‰ to 0.09 ‰ in the post-mining site and from −1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994–0.9997 for uranium and 1.0032–1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ liu_study_2023 Serial 155
Permanent link to this record
 

 
Author Jroundi, F.; Povedano-Priego, C.; Pinel-Cabello, M.; Descostes, M.; Grizard, P.; Purevsan, B.; Merroun, M.L.
Title Evidence of microbial activity in a uranium roll-front deposit: Unlocking their potential role as bioenhancers of the ore genesis Type Journal Article
Year 2023 Publication Science of The Total Environment Abbreviated Journal
Volume (down) 861 Issue Pages 160636
Keywords ISR, Metatranscriptomes, Microbial metabolisms, Ore genesis, Roll-front deposit, Uranium
Abstract Uranium (U) roll-front deposits constitute a valuable source for an economical extraction by in situ recovery (ISR) mining. Such technology may induce changes in the subsurface microbiota, raising questions about the way their activities could build a functional ecosystem in such extreme environments (i.e.: oligotrophy and high SO4 concentration and salinity). Additionally, more information is needed to dissipate the doubts about the microbial role in the genesis of such U orebodies. A U roll-front deposit hosted in an aquifer driven system (in Zoovch Ovoo, Mongolia), intended for mining by acid ISR, was previously explored and showed to be governed by a complex bacterial diversity, linked to the redox zonation and the geochemical conditions. Here for the first time, transcriptional activities of microorganisms living in such U ore deposits are determined and their metabolic capabilities allocated in the three redox-inherited compartments, naturally defined by the roll-front system. Several genes encoding for crucial metabolic pathways demonstrated a strong biological role controlling the subsurface cycling of many elements including nitrate, sulfate, metals and radionuclides (e.g.: uranium), through oxidation-reduction reactions. Interestingly, the discovered transcriptional behaviour gives important insights into the good microbial adaptation to the geochemical conditions and their active contribution to the stabilization of the U ore deposits. Overall, evidences on the importance of these microbial metabolic activities in the aquifer system are discussed that may clarify the doubts on the microbial role in the genesis of low-temperature U roll-front deposits, along the Zoovch Ovoo mine.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ jroundi_evidence_2023 Serial 138
Permanent link to this record
 

 
Author Smedley, P.L.; Bearcock, J.M.; Ward, R.S.; Crewdson, E.; Bowes, M.J.; Darling, W.G.; Smith, A.C.
Title Monitoring of methane in groundwater from the Vale of Pickering, UK: Temporal variability and source discrimination Type Journal Article
Year 2023 Publication Chemical Geology Abbreviated Journal
Volume (down) 636 Issue Pages 121640
Keywords Aquifer, Biogenic, Ethane, Hydrocarbons, Methane, Shale gas
Abstract Groundwater abstracted from aquifers in the Vale of Pickering, North Yorkshire, UK and monitored over the period 2015–2022, shows evidence of variable but commonly high concentrations of dissolved CH4. Sampled groundwater from the Jurassic organic-rich Kimmeridge Clay Formation (boreholes up to 180 m depth) has concentrations up to 57 mg/L, and concentrations up to 59 mg/L are found in groundwater from underlying confined Corallian Group limestone (borehole depths 50–227 m). The high concentrations are mainly from boreholes in the central parts of the vale. Small concentrations of ethane (C2H6, up to 800 μg/L) have been found in the Kimmeridge Clay and confined Corallian groundwaters, and of propane (C3H8, up to 160 μg/L) in deeper boreholes (110–180 m) from these formations. The concentrations are typically higher in groundwater from the deeper boreholes and vary with hydrostatic pressure, reflecting the pressure control on CH4 solubility. The occurrences contrast with groundwater from shallow Quaternary superficial deposits which have low CH4 concentrations (up to 0.39 mg/L), and with the unconfined and semi-confined sections of the Corallian aquifer (up to 0.7 mg/L) around the margins of the vale. Groundwater from the Quaternary, Kimmeridge Clay formations and to a small extent the confined Corallian aquifer, supports local private-water supplies, that from the peripheral unconfined sections of Corallian also supports public supply for towns and villages across the region. Dissolved methane/ethane (C1/C2) ratios and stable-isotopic compositions (δ13C-CH4, δ2H-CH4 and δ13C-CO2) suggest that the high-CH4 groundwater from both the Kimmeridge Clay and confined Corallian formations derives overwhelmingly from biogenic reactions, the methanogenesis pathway by CO2 reduction. A small minority of groundwater samples shows a more enriched δ13C-CH4 composition (−50 to −44 ‰) which has been interpreted as due to anaerobic or aerobic methylotrophic oxidation in situ or post-sampling oxidation, rather than derivation by a thermogenic route. Few of the existing groundwater sites are proximal to abandoned or disused conventional hydrocarbon wells that exist in the region, and little evidence has been found for an influence on groundwater dissolved gases from these sites. The Vale of Pickering has also been under recent consideration for development of an unconventional hydrocarbon (shale-gas) resource. In this context, the monitoring of dissolved gases has been an important step in establishing the high-CH4 baseline of groundwaters from Jurassic deposits in the region and in apportioning their sources and mechanisms of genesis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2541 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ smedley_monitoring_2023 Serial 172
Permanent link to this record