toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pham, H.C.; Alila, Y. url  openurl
  Title Science of forests and floods: The quantum leap forward needed, literally and metaphorically Type Journal Article
  Year 2024 Publication Science of The Total Environment Abbreviated Journal  
  Volume (down) 912 Issue Pages 169646  
  Keywords Hydrological causality, Extreme value analyses, Land use impact, Peakflows, Extreme events epistemology, Experimental design  
  Abstract A century of research has generated considerable disagreement on the effect of forests on floods. Here we call for a causal inference framework to advance the science and management of the effect of any forest or its removal on flood severity and frequency. The causes of floods are multiple and chancy and, hence, can only be investigated via a probabilistic approach. We use the stochastic hydrology literature to infer a blueprint framework which could guide future research on the understanding and prediction of the effects of forests on floods in environments where rain is the dominant form of precipitation. Drawing parallels from other disciplines, we show that the introduction of probability in forest hydrology could stimulate a gestalt switch in the science of forests and floods. In light of increasing flood risk caused by climate change, this probabilistic framework can help policymakers develop robust forest and water management plans based on a defensible and clear understanding of floods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Pham2024169646 Serial 244  
Permanent link to this record
 

 
Author Leeuwen, Z.R. van; Klaar, M.J.; Smith, M.W.; Brown, L.E. url  openurl
  Title Quantifying the natural flood management potential of leaky dams in upland catchments, Part II: Leaky dam impacts on flood peak magnitude Type Journal Article
  Year 2024 Publication Journal of Hydrology Abbreviated Journal  
  Volume (down) 628 Issue Pages 130449  
  Keywords Nature based solutions, Large wood, Empirical, Hydrograph analysis, Ecosystem services, Transfer function noise model  
  Abstract Leaky dams are an increasingly popular natural flood management measure, yet their impacts on flood peak magnitude have not yet been empirically quantified for a range of event types and magnitudes, even at the stream scale. In this study, the novel application of a transfer function noise modelling approach to empirical Before-After-Control-Impact stage data from an upland catchment allowed leaky dam effectiveness in reducing flood peak magnitude to be quantified. Flood peak stage and discharge magnitude changes were assessed from empirical data for 50 single and multi-peaked high flow events with return periods ranging from less than one year to six years. Overall, event peak magnitude was significantly reduced following the installation of eight leaky dams on the impact stream. Effectiveness was highly variable, but on average, flood peak magnitude was reduced by 10% for events with a return period up to one year. Some of the variability was explained by the size of the event and whether it was a single or multi-peaked event. This finding emphasises the need to manage expectations by considering both a range of event magnitudes and types when designing or assessing leaky dam natural flood management schemes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Vanleeuwen2024130449 Serial 228  
Permanent link to this record
 

 
Author Seidl, C.; Wheeler, S.A.; Page, D. url  openurl
  Title Understanding the global success criteria for managed aquifer recharge schemes Type Journal Article
  Year 2024 Publication Journal of Hydrology Abbreviated Journal  
  Volume (down) 628 Issue Pages 130469  
  Keywords Managed Aquifer Recharge (MAR), Fuzzy-set Qualitative Comparative Analysis, Water banking, Groundwater, Water management, Water storage  
  Abstract Water availability and quality issues will only gain importance in the future, with climate change impacts putting increasing pressure on global water resources. Dealing with these challenges requires drawing on all available water management tools, including Managed Aquifer Recharge (MAR). Although MAR has seen increasing global implementation during the last half a century, it is still often overlooked as a management tool. While technical, bio-physical, and hydrogeological aspects of MAR are well researched, this cannot be said for socio-economic and other governance factors. Where information is available, this study seeks to understand the conditions necessary for MAR success. We apply fuzzy-set Qualitative Comparative Analysis on 313 world MAR applications, and also model separately for high- and low-middle-income countries. Results show that sophisticated hydrogeological site understanding and scheme operation is paramount for MAR success, as is utilizing natural water sources for high value end uses. Successful high-income country MAR schemes tend to be large and utilize natural water sources and sophisticated water injection and treatment methods to augment potable water supply; while successful low-middle-income country schemes are not large, older than 20 years, and use gravity infiltration methods and (limited) no water treatment. These findings will help inform the future suitability of MAR application design and its likely success within various contexts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-1694 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Seidl2024130469 Serial 273  
Permanent link to this record
 

 
Author Hubbard, B.E.; Gallegos, T.J.; Stengel, V.; Hoefen, T.M.; Kokaly, R.F.; Elliott, B. url  openurl
  Title Hyperspectral (VNIR-SWIR) analysis of roll front uranium host rocks and industrial minerals from Karnes and Live Oak Counties, Texas Coastal Plain Type Journal Article
  Year 2024 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume (down) 257 Issue Pages 107370  
  Keywords Critical minerals, Hyperspectral, Industrial minerals, Mine waste, Texas coastal plain, Uranium  
  Abstract VNIR-SWIR (400–2500 nm) reflectance measurements were made on the surfaces of various cores, cuttings and sample splits of sedimentary rocks from the Tertiary Jackson Group, and Catahoula, Oakville and Goliad Formations. These rocks vary in composition and texture from mudstone and claystone to sandstone and are known host rocks for roll front uranium occurrences in Karnes and Live Oak Counties, Texas. Spectral reflectance profiles, 569 in total, were reduced to 125 representative spectral signatures, which were analyzed using the U.S. Geological Survey’s (USGS) Material Identification and Characterization Algorithm (MICA). MICA uses an automated continuum-removal procedure together with a least-squares linear regression to determine the fit of observed sample spectral absorption features to those of reference mineral standards in a spectral library. The reference minerals include various clay, mica, carbonate, ferric and ferrous iron minerals and their mixtures. In addition, absorption feature band-depth analysis was done to identify rock surfaces exhibiting absorption features related to uranium and zeolite minerals, which were not included in the command files used to execute MICA. Rocks from each of the four geologic units produced broadly similar spectral signatures as a result of comparable mineral compositions, but there were some notable differences. For example, Ca- and Na-montmorillonite was matched most frequently to the spectral absorption features in 2-μm (∼2000–2500 nm) wavelengths, while goethite occurred often at 1-μm (∼400–1000 nm) wavelengths. The latter is related to limonitic iron-staining in and around oxidized zones of the uranium roll front as described in previous papers. Rocks of the Jackson Group differed from those of the Catahoula, Oakville and Goliad units in that the former exhibited spectral features we interpret as being due to the presence of lignite-bearing mudstone layers. Goliad rocks exhibit spectral features related to dolomite, gypsum, anhydrite, and an unidentified green clay mineral that is possibly glauconite. Jackson Group rocks also exhibit weak but well-resolved absorption features at 964 and 1157 nm related to either or both zeolite minerals clinoptilolite and heulandite. These zeolite minerals and a few spectra exhibiting hydrous silica absorption features are indicative of alteration of volcanic glass in tuffaceous mudstone and claystone layers. A few sample spectra exhibited strong absorption features at around 1135 nm related to the uranium mineral coffinite. Both the 1135 nm coffinite and 1157 nm zeolite absorption features overlap somewhat, potentially making them difficult to distinguish without additional hyperspectral field, laboratory or remote sensing data. The results of this study were compared to mixtures of minerals described for ore, gangue and alteration minerals in deposit models for sandstone-hosted uranium, sedimentary bentonite and sedimentary zeolite. Use of these spectra can help facilitate mapping of both waste materials from the legacy mining of the above commodities, as well as future exploration and resource assessment activities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hubbard_hyperspectral_2024 Serial 178  
Permanent link to this record
 

 
Author Netzer, L.; Kurtzman, D.; Ben-Hur, M.; Livshitz, Y.; Katzir, R.; Nachshon, U. url  openurl
  Title Novel approach to roof rainwater harvesting and aquifer recharge in an urban environment: Dry and wet infiltration wells comparison Type Journal Article
  Year 2024 Publication Water Research Abbreviated Journal  
  Volume (down) 252 Issue Pages 121183  
  Keywords Rainwater harvesting, Managed aquifer recharge, Urban hydrology, Infiltration wells  
  Abstract In urban environments there is a severe reduction of infiltration and groundwater recharge due to the existence of large impervious areas. During rain events, large volumes of water that could have recharged groundwater and surface water bodies are diverted into the municipal drainage system and lost from the freshwater storage. Moreover, extreme rain events impose high peak flows and large runoff volumes, which increase the risk of urban floods. Recent studies have suggested the use of rainwater harvesting for groundwater recharge, as a plausible solution for these challenges in dense urban environments. While the benefits of this approach are well understood, research on its practical, engineering, and hydrological aspects is relatively limited. The objective of the present study was to examine the use of infiltration wells for groundwater recharge with harvested rainwater collected from building rooftops under Mediterranean climate conditions. Two types of wells with similar hydraulic and technical properties were examined: a well that reaches the groundwater (wet well); and a well that discharges the harvested water into the unsaturated zone (dry well). Infiltration capacities of the wells were compared in controlled experiments conducted during summer months, and in operational recharge of harvested rainwater, during winter. Both dry and wet wells were found to be suitable for purposes of groundwater recharge with rooftop-harvested rainwater. Infiltration capacity of the wet well was about seven times greater than the infiltration capacity of the dry well. While the infiltration capacity of the wet well was constant throughout the entire length of the study (∼10 m3/h/m), the dry well infiltration capacity improved during winter (from 0.5 m3/h/m to 1.5 m3/h/m), a result of development of the dry well with time. Considering Tel-Aviv, Israel, as a case study for a dense modern city in a Mediterranean climate, it is demonstrated herein that the use of infiltration wells may reduce urban drainage by ∼40 %.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Netzer2024121183 Serial 230  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: