toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Soh, Q.Y.; O’Dwyer, E.; Acha, S.; Shah, N. url  openurl
  Title Robust optimisation of combined rainwater harvesting and flood mitigation systems Type Journal Article
  Year 2023 Publication Water Research Abbreviated Journal  
  Volume 245 Issue Pages 120532  
  Keywords Rainwater harvesting, Flood mitigation, Robust stochastic optimisation, Sustainable environmental engineering, Decision tool, Urban residential estates  
  Abstract Combined large-scale rainwater harvesting (RWH) and flood mitigation systems are promising as a sustainable water management strategy in urban areas. These are multi-purpose infrastructure that not only provide a secondary, localised water resource, but can also reduce discharge and hence loads on any downstream wastewater networks if these are integrated into the wider water network. However, the performance of these systems is dependent on the specific design used for its local catchment which can vary significantly between different implementations. A multitude of design strategies exist, however there is no universally accepted standard framework. To tackle these issues, this paper presents a two-player optimisation framework which utilises a stochastic design optimisation model and a competing, high-intensity rainfall design model to optimise passively-operated RWH systems. A customisable tool set is provided, under which optimisation models specific to a given catchment can be built quickly. This reduces the barriers to implementing computationally complex sizing strategies and encouraging more resource-efficient systems to be built. The framework was applied to a densely populated high-rise residential estate, eliminating overflow events from historical rainfall. The optimised configuration resulted in a 32% increase in harvested water yield, but its ability to meet irrigation demands was limited by the operational levels of the treatment pump. Hence, with the inclusion of operational levels in the optimisation model, the framework can provide an efficient large-scale RWH system that is capable of simultaneously meeting water demands and reducing stresses within and beyond its local catchment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Soh2023120532 Serial 243  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: