|   | 
Details
   web
Records
Author Hofmann, H.; Pearce, J.K.; Hayes, P.; Golding, S.D.; Hall, N.; Baublys, K.A.; Raiber, M.; Suckow, A.
Title Multi-tracer approach to constrain groundwater flow and geochemical baseline assessments for CO2 sequestration in deep sedimentary basins Type Journal Article
Year 2023 Publication International Journal of Coal Geology Abbreviated Journal
Volume Issue Pages 104438
Keywords CO geological storage, Great Artesian Basin, Groundwater chemistry, Isotopic tracer, Surat Basin
Abstract (up) Geological storage of gases will be necessary in the push to net zero and the energy transition to reduce carbon emissions to atmosphere. These include CO2 geological storage in suitable sandstone reservoirs. Understanding groundwater flow, connectivity and hydrogeochemical processes in aquifer and storage systems is vital to prevent risk and protect important water resources, such as the Great Artesian Basin. Here, we provide a ‘tool-box’ of geochemical assessment methods to provide information on flow patterns through the basin’s aquifers (changes in chemistry along flow path), stagnant versus flowing conditions (cosmogenic isotopes and noble gases), inter-aquifer connectivity and seal properties (major ions, Sr and stable isotopes), water quality (major ions and metals) and general assessments on residence times of groundwater (cosmogenic isotopes and noble gases). This information can be used with reservoir and groundwater models to inform on possible changes in the above-mentioned processes and serve as input parameters for CO2 injection impact modelling. We demonstrate the use and interpretation on an example of a potential CO2 storage geological sequestration site in the Surat Basin, part of the Great Artesian Basin, and the aquifers that overly the reservoir. The stable water isotopes are depleted compared to average rainfall and most likely indicate greater contributions from monsoonal rain events from the northern monsoonal troughs, where amount and rainout effects lead to the depletion rather than colder recharge climates. This is supported by the modern recharge temperatures from noble gases. Inter-aquifer mixing between the Precipice Sandstone reservoir and the Hutton Sandstone aquifer seems unlikely as the Sr isotope ratios are distinctly different suggesting that the Evergreen Formation is a seal in the locations sampled. Mixing, however, occurs on the edges of the basin, especially in the south-east and east where the Surat Basin transitions into the Clarence-Moreton Basin. Groundwater flow appears to be to the south in the Precipice Sandstone, with a component of flow east to the Clarence-Morton Basin. The cosmogenic isotopes and noble gases strongly indicate very long residence times of groundwater in the central south Precipice Sandstone around a proposed storage site. 14C values below analytical uncertainty, R36Cl ratios at secular equilibrium as well as high He concentrations and high 40Ar/36Ar ratios support the argument that groundwater flow in this area is extremely slow or groundwater is stagnant. The results of this study reflect the geological and hydrogeological complexities of sedimentary basins and that baseline studies, such as this one, are paramount for management strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-5162 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hofmann_multi-tracer_2023 Serial 165
Permanent link to this record
 

 
Author Smedley, P.L.; Bearcock, J.M.; Ward, R.S.; Crewdson, E.; Bowes, M.J.; Darling, W.G.; Smith, A.C.
Title Monitoring of methane in groundwater from the Vale of Pickering, UK: Temporal variability and source discrimination Type Journal Article
Year 2023 Publication Chemical Geology Abbreviated Journal
Volume 636 Issue Pages 121640
Keywords Aquifer, Biogenic, Ethane, Hydrocarbons, Methane, Shale gas
Abstract (up) Groundwater abstracted from aquifers in the Vale of Pickering, North Yorkshire, UK and monitored over the period 2015–2022, shows evidence of variable but commonly high concentrations of dissolved CH4. Sampled groundwater from the Jurassic organic-rich Kimmeridge Clay Formation (boreholes up to 180 m depth) has concentrations up to 57 mg/L, and concentrations up to 59 mg/L are found in groundwater from underlying confined Corallian Group limestone (borehole depths 50–227 m). The high concentrations are mainly from boreholes in the central parts of the vale. Small concentrations of ethane (C2H6, up to 800 μg/L) have been found in the Kimmeridge Clay and confined Corallian groundwaters, and of propane (C3H8, up to 160 μg/L) in deeper boreholes (110–180 m) from these formations. The concentrations are typically higher in groundwater from the deeper boreholes and vary with hydrostatic pressure, reflecting the pressure control on CH4 solubility. The occurrences contrast with groundwater from shallow Quaternary superficial deposits which have low CH4 concentrations (up to 0.39 mg/L), and with the unconfined and semi-confined sections of the Corallian aquifer (up to 0.7 mg/L) around the margins of the vale. Groundwater from the Quaternary, Kimmeridge Clay formations and to a small extent the confined Corallian aquifer, supports local private-water supplies, that from the peripheral unconfined sections of Corallian also supports public supply for towns and villages across the region. Dissolved methane/ethane (C1/C2) ratios and stable-isotopic compositions (δ13C-CH4, δ2H-CH4 and δ13C-CO2) suggest that the high-CH4 groundwater from both the Kimmeridge Clay and confined Corallian formations derives overwhelmingly from biogenic reactions, the methanogenesis pathway by CO2 reduction. A small minority of groundwater samples shows a more enriched δ13C-CH4 composition (−50 to −44 ‰) which has been interpreted as due to anaerobic or aerobic methylotrophic oxidation in situ or post-sampling oxidation, rather than derivation by a thermogenic route. Few of the existing groundwater sites are proximal to abandoned or disused conventional hydrocarbon wells that exist in the region, and little evidence has been found for an influence on groundwater dissolved gases from these sites. The Vale of Pickering has also been under recent consideration for development of an unconventional hydrocarbon (shale-gas) resource. In this context, the monitoring of dissolved gases has been an important step in establishing the high-CH4 baseline of groundwaters from Jurassic deposits in the region and in apportioning their sources and mechanisms of genesis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2541 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ smedley_monitoring_2023 Serial 172
Permanent link to this record
 

 
Author Tujchneider, O.; Christelis, G.; Gun, J.V. der
Title Towards scientific and methodological innovation in transboundary aquifer resource management Type Journal Article
Year 2013 Publication Environmental Development Abbreviated Journal
Volume 7 Issue Pages 6-16
Keywords Communication, Cooperation, Holistic methodological approach, Science, Transboundary aquifer management
Abstract (up) Groundwater is both an invaluable and a vulnerable resource. Aquifer resources management, aiming at the responsible exploitation and adequate protection of the groundwater resources, is therefore of key importance and has to be based on sound hydrological, environmental, economic and social principles. Aquifer-wide groundwater projects are carried out to collect the required area-specific information, to understand ongoing processes, to identify the management issues to be addressed and to develop an adequate management strategy and action plan. The quality of the project results depends to a large extent on the science and methodologies adopted in the design and used during the implementation of the projects. In this context, a project was carried out recently to analyse the scientific aspects of—among others—the transboundary aquifer projects within the IW: Portfolio of the Global Environmental Facility (GEF) and to make recommendations for scientific strengthening and innovation. This paper presents the main outcomes of this analysis. In order to accomplish groundwater resources management goals in the case of transboundary aquifers, a balanced joint strategy is needed. Analysis of documentation on completed and on-going transboundary aquifer projects has shown a wide range of scientific activities that contribute positively to the development of such strategies. This analysis has also identified options for increasing the positive impacts of science on strategy development; some of these options have been pioneered already and deserve wider application other ones are relatively new. Important options are: integrating transboundary aquifer resource management in a wider environmental–socio-economical context (holistic approach); exploring causal chains to better understand the processes of change of groundwater resources; using this improved understanding for optimising groundwater assessment and monitoring programmes; and adaptive management. In addition, to obtain maximum benefit of the scientific results there is a general need to promote effective communication at all levels, between the scientific community and policy-/decision makers, as well as with the local community who have a major role to play in the use and conservation of the resources. All of this should be accompanied by the harmonisation of the legal instruments and co-operation agreements between countries and the communities involved. Two case studies, one in South America and one in Southern Africa, are added as examples of the setting and approach of the analysed transboundary aquifer projects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-4645 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ tujchneider_towards_2013 Serial 105
Permanent link to this record
 

 
Author Prusty, S.; Somu, P.; Sahoo, J.K.; Panda, D.; Sahoo, S.K.; Sahoo, S.K.; Lee, Y.R.; Jarin, T.; Sundar, L.S.; Rao, K.S.
Title Adsorptive sequestration of noxious uranium (VI) from water resources: A comprehensive review Type Journal Article
Year 2022 Publication Chemosphere Abbreviated Journal
Volume 308 Issue Pages 136278
Keywords Adsorbents, Adsorption, Techniques, Uranium, Wastewater
Abstract (up) Groundwater is usually utilized as a drinking water asset everywhere. Therefore, groundwater defilement by poisonous radioactive metals such as uranium (VI) is a major concern due to the increase in nuclear power plants as well as their by-products which are released into the watercourses. Waste Uranium (VI) can be regarded as a by-product of the enrichment method used to produce atomic energy, and the hazard associated with this is due to the uranium radioactivity causing toxicity. To manage these confronts, there are so many techniques that have been introduced but among those adsorptions is recognized as a straightforward, successful, and monetary innovation, which has gotten major interest nowadays, despite specific drawbacks regarding operational as well as functional applications. This review summarizes the various adsorbents such as Bio-adsorbent/green materials, metal oxide-based adsorbent, polymer based adsorbent, graphene oxide based adsorbent, and magnetic nanomaterials and discuss their synthesis methods. Furthermore, this paper emphasis on adsorption process by various adsorbents or modified forms under different physicochemical conditions. In addition to this adsorption mechanism of uranium (VI) onto different adsorbent is studied in this article. Finally, from the literature reviewed conclusion have been drawn and also proposed few future research suggestions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ prusty_adsorptive_2022 Serial 131
Permanent link to this record
 

 
Author N, D.; Panda, B.; S, C.; V, P.M.; Singh, D.K.; L, R.A.; Sahoo, S.K.
Title Spatio-temporal variations of Uranium in groundwater: Implication to the environment and human health Type Journal Article
Year 2021 Publication Science of The Total Environment Abbreviated Journal
Volume 775 Issue Pages 145787
Keywords Groundwater, Health risk, Speciation, Stable isotopes, Statistics, Uranium
Abstract (up) Groundwater overexploitation has resulted in huge scarcity and increase in the demand for water and food security in India. Groundwater in India has been observed to have experienced various water quality issues like arsenic, fluoride, and Uranium (U) contamination, leading to risk in human health. Markedly, the health risk of higher U in drinking water, as well as its chemical toxicity in groundwater have adverse effects on human. This study has reported occurrence of U as an emerging and widespread phenomenon in South Indian groundwater. Data on U in groundwater were generated from 284 samples along the Cretaceous Tertiary boundary within 4 seasons viz. pre-monsoon (PRM), southwest monsoon (SWM), northeast monsoon (NEM), and post-monsoon (POM). High U concentrations (74 μgL−1) showed to be above the World Health Organization’s provisional guideline value of 30 μgL−1. The geochemical, stable isotope and geophysical studies suggested that U in groundwater could vary with respect to season and was noted to be highest during NEM. The bicarbonate (HCO3) released by weathering process during monsoon could affect the saturation index (SI)Calcite and carbonate species of U. However, the primary source of U was found to be due to geogenic factors, like weathering, dissolution, and groundwater level fluctuation, and that, U mobilization could be enhanced due to anthropogenic activities. The findings further indicated that groundwater in the study area has reached the alarming stage of chemical toxicity. Hence, it is urgent and imperative that workable management strategies for sustainable drinking water source be developed and preventive measures be undertaken, relative to these water quality concerns to mitigate their disconcerting effect on human health.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ n_spatio-temporal_2021 Serial 146
Permanent link to this record
 

 
Author Uddin, M.G.; Diganta, M.T.M.; Sajib, A.M.; Hasan, M.A.; Moniruzzaman, M.; Rahman, A.; Olbert, A.I.
Title Assessment of hydrogeochemistry in groundwater using water quality index model and indices approaches Type Journal Article
Year 2023 Publication Heliyon Abbreviated Journal
Volume 9 Issue 9 Pages 19668
Keywords CCME index, Groundwater quality, Hydrogeochemistry, Irrigation indices, Nuclear power plant, Water quality index
Abstract (up) Groundwater resources around the world required periodic monitoring in order to ensure the safe and sustainable utilization for humans by keeping the good status of water quality. However, this could be a daunting task for developing countries due to the insufficient data in spatiotemporal resolution. Therefore, this research work aimed to assess groundwater quality in terms of drinking and irrigation purposes at the adjacent part of the Rooppur Nuclear Power Plant (RNPP) in Bangladesh. For the purposes of achieving the aim of this study, nine groundwater samples were collected seasonally (dry and wet season) and seventeen hydro-geochemical indicators were analyzed, including Temperature (Temp.), pH, electrical conductivity (EC), total dissolved solids (TDS), total alkalinity (TA), total hardness (TH), total organic carbon (TOC), bicarbonate (HCO3−), chloride (Cl−), phosphate (PO43−), sulfate (SO42−), nitrite (NO2−), nitrate (NO3−), sodium (Na+), potassium (K+), calcium (Ca2+) and magnesium (Mg2+). The present study utilized the Canadian Council of Ministers of the Environment water quality index (CCME-WQI) model to assess water quality for drinking purposes. In addition, nine indices including EC, TDS, TH, sodium adsorption ratio (SAR), percent sodium (Na%), permeability index (PI), Kelley’s ratio (KR), magnesium hazard ratio (MHR), soluble sodium percentage (SSP), and Residual sodium carbonate (RSC) were used in this research for assessing the water quality for irrigation purposes. The computed mean CCME-WQI score found higher during the dry season (ranges 48 to 74) than the wet season (ranges 40 to 65). Moreover, CCME-WQI model ranked groundwater quality between the “poor” and “marginal” categories during the wet season implying unsuitable water for human consumption. Like CCME-WQI model, majority of the irrigation index also demonstrated suitable water for crop cultivation during dry season. The findings of this research indicate that it requires additional care to improve the monitoring programme for protecting groundwater quality in the RNPP area. Insightful information from this study might be useful as baseline for national strategic planners in order to protect groundwater resources during the any emergencies associated with RNPP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2405-8440 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ uddin_assessment_2023 Serial 167
Permanent link to this record
 

 
Author Lapworth, D.J.; Brauns, B.; Chattopadhyay, S.; Gooddy, D.C.; Loveless, S.E.; MacDonald, A.M.; McKenzie, A.A.; Muddu, S.; Nara, S.N.V.
Title Elevated uranium in drinking water sources in basement aquifers of southern India Type Journal Article
Year 2021 Publication Applied Geochemistry Abbreviated Journal
Volume 133 Issue Pages 105092
Keywords Anthropogenic, Drinking waters, Geogenic, India, Speciation, Uranium
Abstract (up) Groundwater resources in the crystalline basement complex of India are crucial for supplying drinking water in both rural and urban settings. Groundwater depletion is recognised as a challenge across parts of India due to over-abstraction, but groundwater quality constraints are perhaps even more widespread and often overlooked at the local scale. Uranium contamination in basement aquifers has been reported in many parts of India, locally exceeding WHO drinking water guideline values of 30 μg/L and posing a potential health risk. In this study 130 water samples were collected across three crystalline basement catchments to assess hydrochemical, geological and anthropogenic controls on uranium mobility and occurrence in drinking water sources. Groundwaters with uranium concentrations exceeding 30 μg/L were found in all three study catchments (30% of samples overall), with concentrations up to 589 μg/L detected. There appears to be a geological control on the occurrence of uranium in groundwater with the granitic gneiss of the Halli and Bengaluru study areas having higher mean uranium concentrations (51 and 68 μg/L respectively) compared to the sheared gneiss of the Berambadi catchment (6.4 μg/L). Uranium – nitrate relationships indicate that fertiliser sources are not a major control on uranium occurrence in these case studies which include two catchments with a long legacy of intense agricultural land use. Geochemical modelling confirmed uranium speciation was dominated by uranyl carbonate species, particularly ternary complexes with calcium, consistent with uranium mobility being affected by redox controls and the presence of carbonates. Urban leakage in Bengaluru led to low pH and low bicarbonate groundwater hydrochemistry, reducing uranium mobility and altering uranium speciation. Since the majority of inhabitants in Karnataka depend on groundwater abstraction from basement aquifers for drinking water and domestic use, exposure to elevated uranium is a public health concern. Improved monitoring, understanding and treatment of high uranium drinking water sources in this region is essential to safeguard public health.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ lapworth_elevated_2021 Serial 147
Permanent link to this record
 

 
Author Sahoo, S.K.; Jha, V.N.; Patra, A.C.; Jha, S.K.; Kulkarni, M.S.
Title Scientific background and methodology adopted on derivation of regulatory limit for uranium in drinking water – A global perspective Type Journal Article
Year 2020 Publication Environmental Advances Abbreviated Journal
Volume 2 Issue Pages 100020
Keywords Drinking water, Global policy, Regulatory limits, Toxicity, Uranium
Abstract (up) Guideline values are prescribed for drinking water to ensure long term protection of the public against anticipated potential adverse effects. There is a great public and regulatory agencies interest in the guideline values of uranium due to its complex behavior in natural aquatic system and divergent guideline values across the countries. Wide variability in guideline values of uranium in drinking water may be attributed to toxicity reference point, variation in threshold values, uncertainty within intraspecies and interspecies, resource availability, socio-economic condition, variation in ingestion rate, etc. Although guideline values vary to a great extent, reasonable scientific basis and technical judgments are essential before it could be implemented. Globally guideline values are derived considering its radiological or chemical toxicity. Minimal or no adverse effect criterions are normally chosen as the basis for deriving the guideline values of uranium. In India, the drinking water limit of 60 µg/L has been estimated on the premise of its radiological concern. A guideline concentration of 2 µg/L is recommended in Japan while 1700 µg/L in Russia. The relative merit of different experimental assumption, scientific approach and its methodology adopted for derivation of guideline value of uranium in drinking water in India and other countries is discussed in the paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2666-7657 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ sahoo_scientific_2020 Serial 127
Permanent link to this record
 

 
Author Orloff, K.G.; Mistry, K.; Charp, P.; Metcalf, S.; Marino, R.; Shelly, T.; Melaro, E.; Donohoe, A.M.; Jones, R.L.
Title Human exposure to uranium in groundwater Type Journal Article
Year 2004 Publication Environmental Research Abbreviated Journal
Volume 94 Issue 3 Pages 319-326
Keywords Groundwater, Human exposure, Uranium, Urine
Abstract (up) High concentrations of uranium (mean=620μg/L) were detected in water samples collected from private wells in a residential community. Based on isotopic analyses, the source of the uranium contamination appeared to be from naturally occurring geological deposits. In homes where well water concentrations of uranium exceeded the drinking water standard, the residents were advised to use an alternate water source for potable purposes. Several months after the residents had stopped drinking the water, urine samples were collected and tested for uranium. Elevated concentrations of uranium (mean=0.40μg/g creatinine) were detected in urine samples, and 85 percent of the urine uranium concentrations exceeded the 95th percentile concentration of a national reference population. Urine uranium concentrations were positively correlated with water uranium concentrations, but not with the participants’ ages or how long they had been drinking the water. Six months later, a second urine sample was collected and tested for uranium. Urine uranium concentrations decreased in most (63 percent) of the people. In those people with the highest initial urine uranium concentrations, the urine levels decreased an average of 78 percent. However, urine uranium concentrations remained elevated (mean=0.27μg/g), and 87 percent of the urine uranium concentrations exceeded the 95th percentile concentration of the reference population. The results of this investigation demonstrated that after long-term ingestion of uranium in drinking water, elevated concentrations of uranium in urine could be detected up to 10 months after exposure had stopped.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-9351 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ orloff_human_2004 Serial 136
Permanent link to this record
 

 
Author Timsina, J.; Weerahewa, J.
Title Restoring ancient irrigation systems for sustainable agro-ecosystems development: Reflections on the special issue Type Journal Article
Year 2023 Publication Agricultural Systems Abbreviated Journal
Volume 209 Issue Pages 103668
Keywords Ancient irrigation systems, Degradation, Sustainability, Sri Lanka
Abstract (up) Humans have relied on agriculture to feed their communities for thousands of years. Irrigation is practiced in many different forms over the years in countries all over the world. Although modern irrigation systems have been developed, and are in use in many countries, ancient irrigation systems (AISs) have also played a major role in sustaining food production, especially in smallholder farming in least developed and developing countries. The editorial team of Agricultural Systems put out a call for a special issue on restoring AISs for sustainable agro-ecosystems development to capture ancient marvels of traditional irrigation technology across the world. The objectives of this special issue were to: (i) understand and analyse the hydrological and socio-economic networks anchored by AISs; (ii) explain the nature and sustainability of management of these systems in relation to local agro-ecosystems; (iii) analyse the implications of the AISs for land, soil and water quality, and agro-ecosystem services; (iv) qualitative and quantitative analysis of AISs, including bio-physical and bio-economic modelling of these systems; and (v) assess the feasibility of alternative technological, institutional and management strategies to enhance the productivity, profitability, and environmental sustainability of the systems. The overall goal of the special issue was to develop a useful repository for this information as well as to use the journal’s international reach to share this information with the agricultural systems research community and journal readership. This paper provides reflections of papers published in the special issue. The special issue resulted in twelve high quality original research articles and one review article from Asia, Africa and Europe. The findings from various papers revealed that the AISs have been degraded due to human interventions or the anthropogenic activities across the world. Various papers emphasized that as a corrective measure, there is a need for developing and implementing rehabilitation projects in these systems. Authors identified that appropriate policy interventions by the relevant authorities would be a major step towards such rehabilitation process. However, resetting the ecosystem structure of the AISs strictly towards their historical manifestation is neither required nor feasible in the present context as it would contradict the expectations of stakeholders from these systems. The knowledge generated through the special issue provides evidence-based information on various aspects of AISs. It helps aware governments, private sectors and development agencies for improved policy planning and decision making and for prioritizing the restoration, rehabilitation, and management of various AISs around the world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Timsina2023103668 Serial 255
Permanent link to this record