toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Abiye, T. url  openurl
  Title Synthesis on groundwater recharge in Southern Africa: A supporting tool for groundwater users Type Journal Article
  Year 2016 Publication Groundwater for Sustainable Development Abbreviated Journal  
  Volume 2-3 Issue Pages 182-189  
  Keywords Arid and semi-arid areas, Groundwater recharge, Recharge estimation methods, Southern Africa  
  Abstract (up) This synthesis on groundwater recharge targets the Southern African region as a result of the dependence of the community and economic sector on the groundwater resource. Several literature based recharge studies were collected and assessed in order to find out the main controls to the occurrence of recharge. The Water Table Fluctuation and Base flow separation methods have been tested in the catchment that drains crystalline basement rocks and dolostones close to the city of Johannesburg, South Africa. Based on the assessed data the Chloride Mass Balance method resulted in groundwater recharge of less than 4% of the rainfall, while it reaches 20%, when rainfall exceeds 600mm. For the classical water balance method, recharge proportion is less than 3% of rainfall as a result of very high ambient temperature in the region. Based on the Saturated Volume Fluctuation and Water Table Fluctuation methods, recharge could be less than 6% for annual rainfall of less than 600mm. Observational results further suggest that sporadic recharge from high intensity rainfall has important contribution to the groundwater recharge in the region, owing to the presence of permeable geological cover, which could not be fully captured by most of the recharge estimation methods. This study further documents an evaluation of the most reliable recharge estimation methods in the area such as the chloride mass balance, saturated volume fluctuation and water table fluctuation methods in order to successfully manage the groundwater resource.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-801x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ abiye_synthesis_2016 Serial 101  
Permanent link to this record
 

 
Author Zeng, S.; Shen, Y.; Sun, B.; Zhang, N.; Zhang, S.; Feng, S. url  openurl
  Title Pore structure evolution characteristics of sandstone uranium ore during acid leaching Type Journal Article
  Year 2021 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 53 Issue 12 Pages 4033-4041  
  Keywords Acid method, In situ leaching, Nuclear magnetic resonance, Pore characteristic, Sandstone uranium ore  
  Abstract (up) To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ zeng_pore_2021 Serial 199  
Permanent link to this record
 

 
Author Moreau, M.; Daughney, C. url  openurl
  Title Defining natural baselines for rates of change in New Zealand’s groundwater quality: Dealing with incomplete or disparate datasets, accounting for impacted sites, and merging into state of the-environment reporting Type Journal Article
  Year 2021 Publication Science of The Total Environment Abbreviated Journal  
  Volume 755 Issue Pages 143292  
  Keywords Baseline, Groundwater quality, Machine-learning, Monitoring, New Zealand, Trends  
  Abstract (up) To effectively manage sustainably groundwater bodies, it is essential to establish what the naturally occurring ranges of chemical concentrations in groundwaters are and how they change over time. We defined baseline trends for New Zealand groundwaters using: 1) pattern recognition techniques to deal with inconsistent monitoring suites between the national (110 sites) and the denser regional network (\textgreater1000 sites), and 2) multivariate statistics to identify and remove impacted sites from the enhanced dataset. Rates of changes were calculated for 13 parameters between January 2005 and December 2014 at more than 1000 groundwater quality monitoring sites. The resulting dataset included 262 complete cases (CC), which was enhanced using Machine-Learning (ML) techniques to a total of 607 sites. Hierarchical cluster analysis was used to identify trend clusters that were consistent between the CC, ML-enhanced datasets and a 2006 study based on solely on the national network. The largest cluster (WR) consisted of low magnitude changes across all parameters and was attributed to water-rock interaction processes. The second largest cluster (I) exhibited fast changes particularly for parameters linked to human-induced impact. The third largest cluster (D) comprised decreases of all parameters and was associated with dilution processes. Trend clusters were further refined using groundwater quality state information, enabling the identification of impacted sites outside of Cluster I in the ML-enhanced and CC datasets. Corresponding trend baselines were subsequently derived at unimpacted sites using univariate quantile distribution (5th and 95th percentile thresholds). Finally, we developed classifications combining baselines (state and trend) and natural variability to enhance state of the environment reporting. This allowed the new identification of deteriorating trends at sites where groundwater quality state is not yet affected in addition to trend reversals. These classifications can be adapted to incorporate new knowledge or align with surface water quality reporting.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ moreau_defining_2021 Serial 164  
Permanent link to this record
 

 
Author Illgen, M.; Ackermann, H. url  doi
isbn  openurl
  Title Type Book Chapter
  Year 2019 Publication Urban Flood Prevention: Technical and Institutional Aspects from Chinese and German Perspective Abbreviated Journal  
  Volume Issue Pages 173-193  
  Keywords  
  Abstract (up) Today’s cities face the challenge of climate change adaptation worldwide. In this context, prevention of damage caused by flash floods plays an important role. This requires a cooperative pluvial flood risk management approach, which includes planning, technical, and administrative measures and involves preliminary flood risk analyses. This article outlines the main components of this risk management approach, which has proven its effectiveness in Europe. The recommendations formulated for this purpose are applicable or adaptable to regions with other constraints, such as China, for example.  
  Address  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Cham Editor Köster, S.; Reese, M.; Zuo, J.’e  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-01488-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Illgen2019 Serial 87  
Permanent link to this record
 

 
Author Jing, M.; Kumar, R.; Attinger, S.; Li, Q.; Lu, C.; Heße, F. url  openurl
  Title Assessing the contribution of groundwater to catchment travel time distributions through integrating conceptual flux tracking with explicit Lagrangian particle tracking Type Journal Article
  Year 2021 Publication Advances in Water Resources Abbreviated Journal  
  Volume 149 Issue Pages 103849  
  Keywords Travel time distribution, Flux tracking, Particle tracking, Coupled model, Predictive uncertainty  
  Abstract (up) Travel time distributions (TTDs) provide an effective way to describe the transport and mixing processes of water parcels in a subsurface hydrological system. A major challenge in characterizing catchment TTD is quantifying the travel times in deep groundwater and its contribution to the streamflow TTD. Here, we develop and test a novel modeling framework for an integrated assessment of catchment scale TTDs through explicit representation of 3D-groundwater dynamics. The proposed framework is based on the linkage between a flux tracking scheme with the surface hydrologic model (mHM) for the soil-water compartment and a particle tracking scheme with the 3D-groundwater model OpenGeoSys (OGS) for the groundwater compartment. This linkage provides us with the ability to simulate the spatial and temporal dynamics of TTDs in these different hydrological compartments from grid scale to regional scale. We apply this framework in the Nägelstedt catchment in central Germany. Simulation results reveal that both shape and scale of grid-scale groundwater TTDs are spatially heterogeneous, which are strongly dependent on the topography and aquifer structure. The component-wise analysis of catchment TTD shows a time-dependent sensitivity of transport processes in soil zone and groundwater to driving meteorological forcing. Catchment TTD exhibits a power-law shape and fractal behavior. The predictive uncertainty in catchment mean travel time is dominated by the uncertainty in the deep groundwater rather than that in the soil zone. Catchment mean travel time is severely biased by a marginal error in groundwater characterization. Accordingly, we recommend to use multiple summary statistics to minimize the predictive uncertainty introduced by the tailing behavior of catchment TTD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0309-1708 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Jing2021103849 Serial 220  
Permanent link to this record
 

 
Author Lima, G.F.C.; Filho, C.A. de C.; Ferreira, V.G.; Lima, J. da S.D.; Marques, E.D.; Minardi, P.S.P.; Dalmázio, I.; Moreira, R.M. url  openurl
  Title Establishing a water baseline for the unconventional gas industry: A multiple environmental isotopes assessment (18O, 2H, 3H, 13C, and 14C) of surface and groundwater in the São Francisco Basin, Brazil Type Journal Article
  Year 2023 Publication Applied Geochemistry Abbreviated Journal  
  Volume 159 Issue Pages 105818  
  Keywords Fracking, Groundwater dating, Indaiá river, Isotopes assessment, Shale gas, Unconventional hydrocarbons  
  Abstract (up) Unconventional hydrocarbon production has become the target of an intensive environmental debate due to the risks it poses to water resources. Fracking, while enabling the extraction of oil and gas from ultra-low permeability reservoirs, also possesses the risk of polluting water systems through failures from hydraulic fracturing and its associated procedures. The need to foster national industrial development with a transitional energy matrix has led Brazil to discuss the environmental suitability before producing its large unconventional reserves. Many studies have highlighted the need for a robust environmental characterization before the development of the unconventional industry. In this sense, multiple environmental isotopes may work as a proxy for identifying water contamination right from the early stages. Environmental isotopes may also be applied to enhance the understanding of the natural geochemical processes intrinsic to a given area. This study presents an environmental isotopes baseline for the groundwater and riverine water systems within the São Francisco Basin, a proven tight gas reservoir in Brazil, in a pre-operational context. δ18O, δ2H, 3H, δ13C, and Δ14C were evaluated in three different seasons in groundwater and surface water samples, along with other auxiliary parameters such as physical-chemical parameters (in situ), major ions, and d-excess. The δ2H and δ18O in surface water shows an upstream → downstream enrichment trend, with some variations suggesting baseflow interactions in the surface water systems. An evaporation line for the study area was defined as δ2H = 4.6903 δ18O + 10.362. δ13C indicates a mutual dissolution of silicates and carbonates in the groundwater system and suggests a group of samples highly related to the recharge areas. Groundwater dating denotes the Serra da Saudade Formation as a modern fractured aquifer with a strong recharge capacity. These findings support stakeholders in environmental monitoring and management of the unconventional gas industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lima_establishing_2023 Serial 173  
Permanent link to this record
 

 
Author Jroundi, F.; Povedano-Priego, C.; Pinel-Cabello, M.; Descostes, M.; Grizard, P.; Purevsan, B.; Merroun, M.L. url  openurl
  Title Evidence of microbial activity in a uranium roll-front deposit: Unlocking their potential role as bioenhancers of the ore genesis Type Journal Article
  Year 2023 Publication Science of The Total Environment Abbreviated Journal  
  Volume 861 Issue Pages 160636  
  Keywords ISR, Metatranscriptomes, Microbial metabolisms, Ore genesis, Roll-front deposit, Uranium  
  Abstract (up) Uranium (U) roll-front deposits constitute a valuable source for an economical extraction by in situ recovery (ISR) mining. Such technology may induce changes in the subsurface microbiota, raising questions about the way their activities could build a functional ecosystem in such extreme environments (i.e.: oligotrophy and high SO4 concentration and salinity). Additionally, more information is needed to dissipate the doubts about the microbial role in the genesis of such U orebodies. A U roll-front deposit hosted in an aquifer driven system (in Zoovch Ovoo, Mongolia), intended for mining by acid ISR, was previously explored and showed to be governed by a complex bacterial diversity, linked to the redox zonation and the geochemical conditions. Here for the first time, transcriptional activities of microorganisms living in such U ore deposits are determined and their metabolic capabilities allocated in the three redox-inherited compartments, naturally defined by the roll-front system. Several genes encoding for crucial metabolic pathways demonstrated a strong biological role controlling the subsurface cycling of many elements including nitrate, sulfate, metals and radionuclides (e.g.: uranium), through oxidation-reduction reactions. Interestingly, the discovered transcriptional behaviour gives important insights into the good microbial adaptation to the geochemical conditions and their active contribution to the stabilization of the U ore deposits. Overall, evidences on the importance of these microbial metabolic activities in the aquifer system are discussed that may clarify the doubts on the microbial role in the genesis of low-temperature U roll-front deposits, along the Zoovch Ovoo mine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jroundi_evidence_2023 Serial 138  
Permanent link to this record
 

 
Author Jana, A.; Unni, A.; Ravuru, S.S.; Das, A.; Das, D.; Biswas, S.; Sheshadri, H.; De, S. url  openurl
  Title In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: A case study with real life uranium alkaline leach liquor Type Journal Article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal  
  Volume 428 Issue Pages 131180  
  Keywords In-situ polymerization, Layered double hydroxide, Leach liquor, Uranium adsorption, Uranium recovery  
  Abstract (up) Uranium is used as a fuel for nuclear power plant and can be extracted from different ores, mainly acidic (silicious ore) and alkaline (carbonate ore). Recovery of uranium through acid leaching from silicious ore is well established, whereas, alkaline leaching from carbonate ore is challenging due to the excessive salinity of leach liquor and high concentration of carbonate, bicarbonate and sulphate. Herein, two monomers, acrylic acid (AA) and N, N-methylene bisacrylamide (BAM), selective towards uranyl were intercalated in-situ into the interlayer, followed by their polymerization and cross-linking to form novel polymer intercalated hybrid layered double hydroxide (LDH). The LDH acts as a backbone to overcome coiling and swelling of polymer and anchors them as free-standing. Various parameters, like, the type of metal ions, monomer ratio (AA: BAM) and metal ion ratio (M2+:M3+), were studied to determine the optimum conditions for effective intercalation and polymerization of monomers. Magnesium aluminum (MgAl) LDH with a cross-linked polymer having a monomer ratio of 3:2 (AA: BAM) as intercalating species showed maximum efficiency of uranyl adsorption (1456 mg/g at 30 °C) with highest capacity so far. The distribution coefficient (Kd, l/mg) in the order of 105 suggested that the adsorbent was highly selective for uranyl in the presence of different cations, anions and humic acid. The adsorbent extracts uranium effectively and selectively from a real-life alkaline leach liquor with an efficiency of 96% at 5 g/l dose. Uranium can be recovered from the adsorbent in the form of sodium di-uranate using 2(M) NaOH and was reused for eight cycles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jana_-situ_2022 Serial 209  
Permanent link to this record
 

 
Author Mathuthu, M.; Uushona, V.; Indongo, V. url  openurl
  Title Radiological safety of groundwater around a uranium mine in Namibia Type Journal Article
  Year 2021 Publication Physics and Chemistry of the Earth, Parts A/B/C Abbreviated Journal  
  Volume 122 Issue Pages 102915  
  Keywords Groundwater, ICP-MS, Radiological hazard, Uranium mining  
  Abstract (up) Uranium mining activities produce the main element used in nuclear energy production. However, it can also negatively affect the environment including groundwater by release of residues or effluent containing radioactive elements. The study investigated the concentration and radiological hazard of uranium in groundwater and seepage water from the tailings of a uranium mine in Namibia. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) was used to assess the concentration of uranium in the groundwater and seepage water and the radiological hazards were determined. The radiological hazard indices Radium equivalent activity (Raeq), Absorbed dose (D), Annual Effective Dose equivalent (AEDE), External hazard index (Hex) and Internal hazard index (Hin) were determined and compared to limits recommended by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). The calculated average value of D and Hin of groundwater is 108.11nGyh−1 and 1.26, respectively and are above the UNSCEAR values (55 nGyh−1 and 1). Further, the average values of Raeq, AEDE and Hex were below the recommended values. The isotopic ratio of uranium radionuclides in groundwater indicates that the uranium in the sampled groundwater is below 1 suggesting it is not natural uranium present but a possible contamination from the mine seepage. The radiological hazard parameters of the seepage water were above the recommended values and thus pose a radiation risk to human and environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1474-7065 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ mathuthu_radiological_2021 Serial 160  
Permanent link to this record
 

 
Author Grozeva, N.G.; Radwan, J.; Beaucaire, C.; Descostes, M. url  openurl
  Title Reactive transport modeling of U and Ra mobility in roll-front uranium deposits: Parameters influencing 226Ra/238U disequilibria Type Journal Article
  Year 2022 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 236 Issue Pages 106961  
  Keywords Ra/U, Radioactive disequilibria, Radium, Reactive transport modeling, Roll-front uranium deposit  
  Abstract (up) Uranium reserve estimates in ore deposits can be significantly impacted by 226Ra/238U disequilibria arising from the differential mobility of uranium and radium during groundwater transport. 1D reactive transport models were developed to investigate the long-term effects of retention processes (UO2(am) precipitation, U(VI) and Ra sorption on smectite, Ra co-precipitation with barite) on the repartitioning of 238U and 226Ra during formation of roll-front type deposits. Analytical solutions to radioactive decay chains were used in complement to examine the influence of geochemical parameters, including fluid 234U/238U activity ratios and α-recoil loss, on 226Ra/238U disequilibria in uranium ores. Model results demonstrate that smectite and barite can produce 226Ra/238U ratios \textgreater1 at low uranium contents and may explain 226Ra/238U disequilibria occurring in altered rock up- and downstream of roll-front deposits. The capacity of these phases to take up Ra and generate 226Ra/238U disequilibria depends on both mineral contents and groundwater compositions, and is thus expected to be site-specific. Simulations of ore deposits that advance downstream with time demonstrate the formation of stronger 226Ra/238U disequilibria, as expected, in the downgradient side or nose of the ore, reflecting both younger mineralization ages and the presence of active uranium precipitation. Whether disequilibria are positive or negative with respect to secular equilibrium, however, depends on the 234U/238U activity ratio in the fluid from which uranium minerals precipitate. Smaller hydraulic conductivities are shown to generate a narrower range in 226Ra/238U activity ratios with distance, and may explain the occurrence of disequilibria in the limb ore that are less pronounced than those in the nose. Furthermore, the ability of α-recoil loss to decrease 226Ra/238U activity ratios at secular equilibrium may account for negative disequilibria in high grade ores. The South Tortkuduk uranium deposits (Kazakhstan) are subsequently used as a case study to identify the processes and parameters that may contribute to 226Ra/238U disequilibria at this site. Variations in multiple parameters, including clay contents, barite contents, and mineralization ages, are found to reproduce measured 226Ra/238U activity ratios in the roll-front ore. Prioritization of these parameters will necessitate field measurements targeting both groundwater fluids and the host rock. Results from this study will ultimately aid geologists in building appropriate hydrogeochemical data sets to more efficiently locate and exploit uranium ore deposits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ grozeva_reactive_2022 Serial 180  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: