toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Illgen, M.; Ackermann, H. url  doi
isbn  openurl
  Title Type Book Chapter
  Year 2019 Publication Urban Flood Prevention: Technical and Institutional Aspects from Chinese and German Perspective Abbreviated Journal  
  Volume Issue Pages 173-193  
  Keywords  
  Abstract (up) Today’s cities face the challenge of climate change adaptation worldwide. In this context, prevention of damage caused by flash floods plays an important role. This requires a cooperative pluvial flood risk management approach, which includes planning, technical, and administrative measures and involves preliminary flood risk analyses. This article outlines the main components of this risk management approach, which has proven its effectiveness in Europe. The recommendations formulated for this purpose are applicable or adaptable to regions with other constraints, such as China, for example.  
  Address  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Cham Editor Köster, S.; Reese, M.; Zuo, J.’e  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-01488-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Illgen2019 Serial 87  
Permanent link to this record
 

 
Author Jing, M.; Kumar, R.; Attinger, S.; Li, Q.; Lu, C.; Heße, F. url  openurl
  Title Assessing the contribution of groundwater to catchment travel time distributions through integrating conceptual flux tracking with explicit Lagrangian particle tracking Type Journal Article
  Year 2021 Publication Advances in Water Resources Abbreviated Journal  
  Volume 149 Issue Pages 103849  
  Keywords Travel time distribution, Flux tracking, Particle tracking, Coupled model, Predictive uncertainty  
  Abstract (up) Travel time distributions (TTDs) provide an effective way to describe the transport and mixing processes of water parcels in a subsurface hydrological system. A major challenge in characterizing catchment TTD is quantifying the travel times in deep groundwater and its contribution to the streamflow TTD. Here, we develop and test a novel modeling framework for an integrated assessment of catchment scale TTDs through explicit representation of 3D-groundwater dynamics. The proposed framework is based on the linkage between a flux tracking scheme with the surface hydrologic model (mHM) for the soil-water compartment and a particle tracking scheme with the 3D-groundwater model OpenGeoSys (OGS) for the groundwater compartment. This linkage provides us with the ability to simulate the spatial and temporal dynamics of TTDs in these different hydrological compartments from grid scale to regional scale. We apply this framework in the Nägelstedt catchment in central Germany. Simulation results reveal that both shape and scale of grid-scale groundwater TTDs are spatially heterogeneous, which are strongly dependent on the topography and aquifer structure. The component-wise analysis of catchment TTD shows a time-dependent sensitivity of transport processes in soil zone and groundwater to driving meteorological forcing. Catchment TTD exhibits a power-law shape and fractal behavior. The predictive uncertainty in catchment mean travel time is dominated by the uncertainty in the deep groundwater rather than that in the soil zone. Catchment mean travel time is severely biased by a marginal error in groundwater characterization. Accordingly, we recommend to use multiple summary statistics to minimize the predictive uncertainty introduced by the tailing behavior of catchment TTD.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0309-1708 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Jing2021103849 Serial 220  
Permanent link to this record
 

 
Author Lima, G.F.C.; Filho, C.A. de C.; Ferreira, V.G.; Lima, J. da S.D.; Marques, E.D.; Minardi, P.S.P.; Dalmázio, I.; Moreira, R.M. url  openurl
  Title Establishing a water baseline for the unconventional gas industry: A multiple environmental isotopes assessment (18O, 2H, 3H, 13C, and 14C) of surface and groundwater in the São Francisco Basin, Brazil Type Journal Article
  Year 2023 Publication Applied Geochemistry Abbreviated Journal  
  Volume 159 Issue Pages 105818  
  Keywords Fracking, Groundwater dating, Indaiá river, Isotopes assessment, Shale gas, Unconventional hydrocarbons  
  Abstract (up) Unconventional hydrocarbon production has become the target of an intensive environmental debate due to the risks it poses to water resources. Fracking, while enabling the extraction of oil and gas from ultra-low permeability reservoirs, also possesses the risk of polluting water systems through failures from hydraulic fracturing and its associated procedures. The need to foster national industrial development with a transitional energy matrix has led Brazil to discuss the environmental suitability before producing its large unconventional reserves. Many studies have highlighted the need for a robust environmental characterization before the development of the unconventional industry. In this sense, multiple environmental isotopes may work as a proxy for identifying water contamination right from the early stages. Environmental isotopes may also be applied to enhance the understanding of the natural geochemical processes intrinsic to a given area. This study presents an environmental isotopes baseline for the groundwater and riverine water systems within the São Francisco Basin, a proven tight gas reservoir in Brazil, in a pre-operational context. δ18O, δ2H, 3H, δ13C, and Δ14C were evaluated in three different seasons in groundwater and surface water samples, along with other auxiliary parameters such as physical-chemical parameters (in situ), major ions, and d-excess. The δ2H and δ18O in surface water shows an upstream → downstream enrichment trend, with some variations suggesting baseflow interactions in the surface water systems. An evaporation line for the study area was defined as δ2H = 4.6903 δ18O + 10.362. δ13C indicates a mutual dissolution of silicates and carbonates in the groundwater system and suggests a group of samples highly related to the recharge areas. Groundwater dating denotes the Serra da Saudade Formation as a modern fractured aquifer with a strong recharge capacity. These findings support stakeholders in environmental monitoring and management of the unconventional gas industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lima_establishing_2023 Serial 173  
Permanent link to this record
 

 
Author Jroundi, F.; Povedano-Priego, C.; Pinel-Cabello, M.; Descostes, M.; Grizard, P.; Purevsan, B.; Merroun, M.L. url  openurl
  Title Evidence of microbial activity in a uranium roll-front deposit: Unlocking their potential role as bioenhancers of the ore genesis Type Journal Article
  Year 2023 Publication Science of The Total Environment Abbreviated Journal  
  Volume 861 Issue Pages 160636  
  Keywords ISR, Metatranscriptomes, Microbial metabolisms, Ore genesis, Roll-front deposit, Uranium  
  Abstract (up) Uranium (U) roll-front deposits constitute a valuable source for an economical extraction by in situ recovery (ISR) mining. Such technology may induce changes in the subsurface microbiota, raising questions about the way their activities could build a functional ecosystem in such extreme environments (i.e.: oligotrophy and high SO4 concentration and salinity). Additionally, more information is needed to dissipate the doubts about the microbial role in the genesis of such U orebodies. A U roll-front deposit hosted in an aquifer driven system (in Zoovch Ovoo, Mongolia), intended for mining by acid ISR, was previously explored and showed to be governed by a complex bacterial diversity, linked to the redox zonation and the geochemical conditions. Here for the first time, transcriptional activities of microorganisms living in such U ore deposits are determined and their metabolic capabilities allocated in the three redox-inherited compartments, naturally defined by the roll-front system. Several genes encoding for crucial metabolic pathways demonstrated a strong biological role controlling the subsurface cycling of many elements including nitrate, sulfate, metals and radionuclides (e.g.: uranium), through oxidation-reduction reactions. Interestingly, the discovered transcriptional behaviour gives important insights into the good microbial adaptation to the geochemical conditions and their active contribution to the stabilization of the U ore deposits. Overall, evidences on the importance of these microbial metabolic activities in the aquifer system are discussed that may clarify the doubts on the microbial role in the genesis of low-temperature U roll-front deposits, along the Zoovch Ovoo mine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jroundi_evidence_2023 Serial 138  
Permanent link to this record
 

 
Author Jana, A.; Unni, A.; Ravuru, S.S.; Das, A.; Das, D.; Biswas, S.; Sheshadri, H.; De, S. url  openurl
  Title In-situ polymerization into the basal spacing of LDH for selective and enhanced uranium adsorption: A case study with real life uranium alkaline leach liquor Type Journal Article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal  
  Volume 428 Issue Pages 131180  
  Keywords In-situ polymerization, Layered double hydroxide, Leach liquor, Uranium adsorption, Uranium recovery  
  Abstract (up) Uranium is used as a fuel for nuclear power plant and can be extracted from different ores, mainly acidic (silicious ore) and alkaline (carbonate ore). Recovery of uranium through acid leaching from silicious ore is well established, whereas, alkaline leaching from carbonate ore is challenging due to the excessive salinity of leach liquor and high concentration of carbonate, bicarbonate and sulphate. Herein, two monomers, acrylic acid (AA) and N, N-methylene bisacrylamide (BAM), selective towards uranyl were intercalated in-situ into the interlayer, followed by their polymerization and cross-linking to form novel polymer intercalated hybrid layered double hydroxide (LDH). The LDH acts as a backbone to overcome coiling and swelling of polymer and anchors them as free-standing. Various parameters, like, the type of metal ions, monomer ratio (AA: BAM) and metal ion ratio (M2+:M3+), were studied to determine the optimum conditions for effective intercalation and polymerization of monomers. Magnesium aluminum (MgAl) LDH with a cross-linked polymer having a monomer ratio of 3:2 (AA: BAM) as intercalating species showed maximum efficiency of uranyl adsorption (1456 mg/g at 30 °C) with highest capacity so far. The distribution coefficient (Kd, l/mg) in the order of 105 suggested that the adsorbent was highly selective for uranyl in the presence of different cations, anions and humic acid. The adsorbent extracts uranium effectively and selectively from a real-life alkaline leach liquor with an efficiency of 96% at 5 g/l dose. Uranium can be recovered from the adsorbent in the form of sodium di-uranate using 2(M) NaOH and was reused for eight cycles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jana_-situ_2022 Serial 209  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: