|   | 
Details
   web
Records
Author (up) Min, M.; Xu, H.; Chen, J.; Fayek, M.
Title Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China Type Journal Article
Year 2005 Publication Ore Geology Reviews Abbreviated Journal
Volume 26 Issue 3 Pages 198-206
Keywords Biomineralization, China, Roll-front uranium deposit, Sandstone
Abstract We show evidence that the primary uranium minerals, uraninite and coffinite, from high-grade ore samples (U3O8\textgreater0.3%) in the Wuyiyi, Wuyier, and Wuyisan sandstone-hosted roll-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically replace fungi and bacteria. Uranium (VI), which was the sole electron acceptor, was likely to have been enzymically reduced. Post-mortem accumulation of uranium may have also occurred through physio-chemical interaction between uranium and negatively-charged cellular sites, and inorganic adsorption or precipitation reactions. These results suggest that microorganisms may have played a key role in formation of the sandstone- or roll-type uranium deposits, which are among the most economically significant uranium deposits in the world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ min_evidence_2005 Serial 186
Permanent link to this record
 

 
Author (up) Moreau, M.; Daughney, C.
Title Defining natural baselines for rates of change in New Zealand’s groundwater quality: Dealing with incomplete or disparate datasets, accounting for impacted sites, and merging into state of the-environment reporting Type Journal Article
Year 2021 Publication Science of The Total Environment Abbreviated Journal
Volume 755 Issue Pages 143292
Keywords Baseline, Groundwater quality, Machine-learning, Monitoring, New Zealand, Trends
Abstract To effectively manage sustainably groundwater bodies, it is essential to establish what the naturally occurring ranges of chemical concentrations in groundwaters are and how they change over time. We defined baseline trends for New Zealand groundwaters using: 1) pattern recognition techniques to deal with inconsistent monitoring suites between the national (110 sites) and the denser regional network (\textgreater1000 sites), and 2) multivariate statistics to identify and remove impacted sites from the enhanced dataset. Rates of changes were calculated for 13 parameters between January 2005 and December 2014 at more than 1000 groundwater quality monitoring sites. The resulting dataset included 262 complete cases (CC), which was enhanced using Machine-Learning (ML) techniques to a total of 607 sites. Hierarchical cluster analysis was used to identify trend clusters that were consistent between the CC, ML-enhanced datasets and a 2006 study based on solely on the national network. The largest cluster (WR) consisted of low magnitude changes across all parameters and was attributed to water-rock interaction processes. The second largest cluster (I) exhibited fast changes particularly for parameters linked to human-induced impact. The third largest cluster (D) comprised decreases of all parameters and was associated with dilution processes. Trend clusters were further refined using groundwater quality state information, enabling the identification of impacted sites outside of Cluster I in the ML-enhanced and CC datasets. Corresponding trend baselines were subsequently derived at unimpacted sites using univariate quantile distribution (5th and 95th percentile thresholds). Finally, we developed classifications combining baselines (state and trend) and natural variability to enhance state of the environment reporting. This allowed the new identification of deteriorating trends at sites where groundwater quality state is not yet affected in addition to trend reversals. These classifications can be adapted to incorporate new knowledge or align with surface water quality reporting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ moreau_defining_2021 Serial 164
Permanent link to this record
 

 
Author (up) Morin, E.; Grodek, T.; Dahan, O.; Benito, G.; Külls, C.; Jacoby, Y.; Van Langenhove, G.; Seely, M.; Enzel, Y.
Title Flood routing and alluvial aquifer recharge along the ephemeral arid Kuiseb River, Namibia Type Journal Article
Year 2009 Publication Journal of Hydrology Abbreviated Journal
Volume 368 Issue 1-4 Pages 262-275
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Morin2009flood Serial 26
Permanent link to this record
 

 
Author (up) Mühr-Ebert, E.L.; Wagner, F.; Walther, C.
Title Speciation of uranium: Compilation of a thermodynamic database and its experimental evaluation using different analytical techniques Type Journal Article
Year 2019 Publication Applied Geochemistry Abbreviated Journal
Volume 100 Issue Pages 213-222
Keywords
Abstract Environmental hazards are caused by uranium mining legacies and enhanced radioactivity in utilized groundwater and surface water resources. Knowledge of uranium speciation in these waters is essential for predicting radionuclide migration and for installing effective water purification technology. The validity of the thermodynamic data for the environmental media affected by uranium mining legacies is of utmost importance. Therefore, a comprehensive and consistent database was established according to current knowledge. The uranium data included in the database is based on the NEA TDB (Guillaumont et al., 2003) and is modified or supplemented as necessary e.g. for calcium and magnesium uranyl carbonates. The specific ion interaction theory (Brönsted, 1922) is used to estimate activity constants, which is sufficient for the considered low ionic strengths. The success of this approach was evaluated by comparative experimental investigations and model calculations (PHREEQC (Parkhurst and Appelo, 1999)) for several model systems. The waters differ in pH (2.7–9.8), uranium concentration (10−9-10−4 mol/L) and ionic strength (0.002–0.2 mol/L). We used chemical extraction experiments, ESI-Orbitrap-MS and time-resolved laser-induced fluorescence spectroscopy (TRLFS) to measure the uranium speciation. The latter method is nonintrusive and therefore does not change the chemical composition of the investigated waters. This is very important, because any change of the system under study may also change the speciation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ muhr-ebert_speciation_2019 Serial 142
Permanent link to this record
 

 
Author (up) Müller, M.; Alaoui, A.; Külls, C.; Leistert, H.; Meusburger, K.; Stumpp, C.; Weiler, M.; Alewell, C.
Title Tracking water pathways in steep hillslopes by δ18O depth profiles of soil water Type Journal Article
Year 2014 Publication Journal of hydrology Abbreviated Journal
Volume 519 Issue Pages 340-352
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Mueller2014tracking Serial 20
Permanent link to this record