toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Petisco-Ferrero, S.; Idoeta, R.; Rozas, S.; Olondo, C.; Herranz, M. url  openurl
  Title Radiological environmental monitoring of groundwater around NPP: A proposal for its assessment Type Journal Article
  Year 2023 Publication Heliyon Abbreviated Journal  
  Volume 9 Issue 9 Pages 19470  
  Keywords Detection limit, Nuclear power plant dismantling and decommissioning, Radiological environmental monitoring, Radionuclides in groundwater  
  Abstract Whether a nuclear installation has radiological impact and, in that case, its extension, are the questions behind any environmental analysis of the installation along its operational life. This analysis is based on the detailed establishment of the radiological background of the area. Accordingly, the dismantling and decommissioning process (D&D) of a nuclear power plant starts with a radiological monitoring plan, which includes the radiological characterization of the area and of its surroundings. At the completion of the D&D, unrestricted use for the site will be permitted strictly in accordance with results of the radiological survey within the limits established by the local authorities. Groundwater quality is typically included in any radiological analysis since, among other reasons, a significant part of it is highly likely to end up being extracted for domestic use and hence, human consumption. While there is no regulation containing maximum activity concentration or radionuclide guidance values for water that may be destined for uses other than public consumption, if groundwater is considered a “part” of the land, dose criteria for site release can be applied. Therefore, together with the guidance levels to be established for the different radionuclides expected in the groundwater, the detection limits to be employed when performing routine radio analytical characterization procedures in the laboratory should also be provided. In this paper, we first propose a relation of the potential radionuclides to be analyzed in groundwater, together with their detection limits to be achieved when the determinations are performed in a laboratory, and subsequently, we discuss the most suitable analytical methodologies and resources that would be necessary to undertake radiological characterization plans from a practical point of view.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2405-8440 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ petisco-ferrero_radiological_2023 Serial 133  
Permanent link to this record
 

 
Author (down) Musy, S.; Purtschert, R. url  openurl
  Title Reviewing 39Ar and 37Ar underground production in shallow depths with implications for groundwater dating Type Journal Article
  Year 2023 Publication Science of The Total Environment Abbreviated Journal  
  Volume 884 Issue Pages 163868  
  Keywords Subsurface production, Argon-39, Argon-37, Muons, Isotope hydrology, Tracers  
  Abstract Argon-37 (37Ar) and Argon-39 (39Ar) are used for groundwater dating on timescales from weeks to centuries. For both isotopes, the quantification of underground sources is essential to accurately infer water residence times from sampled dissolved activities. Subsurface production resulting from interactions with neutrons from the natural radioactivity in rocks and with primary cosmogenic neutrons has been known for a long time. More recently, the capture of slow negative muons and reactions with muon-induced neutrons were documented for 39Ar subsurface production in the context of underground particle detectors (e.g. for Dark Matter research). However, the contribution from these particles was never considered for groundwater dating applications. Here, we reevaluate the importance of all potential depth-related production channels at depth ranges relevant for 39Ar groundwater dating [0 − 200 meters below the surface (m.b.s)]. The production of radioargon by muon-induced processes is considered in this depth range for the first time. The uncertainty on the total depth-dependent production rate is estimated with Monte Carlo simulations assuming a uniform distribution of the parameter uncertainties. This work aims to provide a comprehensive framework for interpreting 39Ar activities in terms of groundwater residence times and for exposure age dating of rocks. The production of 37Ar is also addressed since this isotope is relevant as a proxy for 39Ar production, for the timing of river-groundwater exchanges, and in the context of on-site inspections (OSI) within the verification framework of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). In this perspective, we provide an interactive web-based application for the calculation of 37Ar and 39Ar production rates in rocks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Musy2023163868 Serial 217  
Permanent link to this record
 

 
Author (down) Mekuria, W.; Tegegne, D. url  isbn
openurl 
  Title Water harvesting Type Book Chapter
  Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal  
  Volume Issue Pages 593-607  
  Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security  
  Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-323-95133-3 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 225  
Permanent link to this record
 

 
Author (down) Mekuria, W.; Tegegne, D. url  isbn
openurl 
  Title Water harvesting Type Book Chapter
  Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal  
  Volume Issue Pages 593-607  
  Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security  
  Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-323-95133-3 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 265  
Permanent link to this record
 

 
Author (down) Mabrouk, M.; Han, H.; Fan, C.; Abdrabo, K.I.; Shen, G.; Saber, M.; Kantoush, S.A.; Sumi, T. url  openurl
  Title Assessing the effectiveness of nature-based solutions-strengthened urban planning mechanisms in forming flood-resilient cities Type Journal Article
  Year 2023 Publication Journal of Environmental Management Abbreviated Journal  
  Volume 344 Issue Pages 118260  
  Keywords Flood, Urban planning, Sustainable cities, LID, Natural-based solutions, Alexandria  
  Abstract Cities have experienced rapid urbanization-induced harsh climatic events, especially flooding, inevitably resulting in negative and irreversible consequences for urban resilience and endangering residents’ lives. Numerous studies have analyzed the effects of anthropogenic practices (land use changes and urbanization) on flood forecasting. However, non-structural mitigation’s effectiveness, like Nature-Based Solutions (NBS), has yet to receive adequate attention, particularly in the Middle East and North Africa (MENA) region, which have become increasingly significant and indispensable for operationalizing cities efficiently. Therefore, our study investigated the predictive influence of incorporating one of the most common NBS strategies called low-impact development tools (LID) (such as rain gardens, bio-retention cells, green roofs, infiltration trenches, permeable pavement, and vegetative swale) during the urban planning of Alexandria, Egypt, which experiences the harshest rainfall annually and includes various urban patterns. City characteristics-dependent 14 LID scenarios were simulated with recurrence intervals ranging from 2 to 100 years using the LID Treatment Train Tool (LID TTT), depending on calibrated data from 2015 to 2020, by the Nash-Sutcliffe efficiency index and deterministic coefficient, and root-mean-square error with values of 0.97, 0.91, and 0.31, respectively. Our findings confirmed the significant effectiveness of combined LID tools on total flood runoff volume reduction by 73.7%, revealing that different urban patterns can be used in flood-prone cities, provided LID tools are considered in city planning besides grey infrastructure to achieve optimal mitigation. These results, which combined multiple disciplines and were not explicitly mentioned in similar studies in developing countries, may assist municipalities’ policymakers in planning flood-resistant, sustainable cities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Mabrouk2023118260 Serial 232  
Permanent link to this record
 

 
Author (down) Liu, Z.; Tan, K.; Li, C.; Li, Y.; Zhang, C.; Song, J.; Liu, L. url  openurl
  Title Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang Type Journal Article
  Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 55 Issue 4 Pages 1476-1484  
  Keywords Acid in situ leaching of uranium, Pollution evolution, Sulfate elimination, Sulfur isotopes analysis  
  Abstract Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%–48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ liu_geochemical_2023 Serial 192  
Permanent link to this record
 

 
Author (down) Liu, Z.; Li, C.; Tan, K.; Li, Y.; Tan, W.; Li, X.; Zhang, C.; Meng, S.; Liu, L. url  openurl
  Title Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data Type Journal Article
  Year 2023 Publication Science of The Total Environment Abbreviated Journal  
  Volume 865 Issue Pages 161033  
  Keywords Acid in situ leaching, Geochemical and isotopic tracing, Groundwater contamination, Natural attenuation, Uranium post-mining  
  Abstract Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42−, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from −0.07 ‰ to 0.09 ‰ in the post-mining site and from −1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994–0.9997 for uranium and 1.0032–1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ liu_study_2023 Serial 155  
Permanent link to this record
 

 
Author (down) Lima, G.F.C.; Filho, C.A. de C.; Ferreira, V.G.; Lima, J. da S.D.; Marques, E.D.; Minardi, P.S.P.; Dalmázio, I.; Moreira, R.M. url  openurl
  Title Establishing a water baseline for the unconventional gas industry: A multiple environmental isotopes assessment (18O, 2H, 3H, 13C, and 14C) of surface and groundwater in the São Francisco Basin, Brazil Type Journal Article
  Year 2023 Publication Applied Geochemistry Abbreviated Journal  
  Volume 159 Issue Pages 105818  
  Keywords Fracking, Groundwater dating, Indaiá river, Isotopes assessment, Shale gas, Unconventional hydrocarbons  
  Abstract Unconventional hydrocarbon production has become the target of an intensive environmental debate due to the risks it poses to water resources. Fracking, while enabling the extraction of oil and gas from ultra-low permeability reservoirs, also possesses the risk of polluting water systems through failures from hydraulic fracturing and its associated procedures. The need to foster national industrial development with a transitional energy matrix has led Brazil to discuss the environmental suitability before producing its large unconventional reserves. Many studies have highlighted the need for a robust environmental characterization before the development of the unconventional industry. In this sense, multiple environmental isotopes may work as a proxy for identifying water contamination right from the early stages. Environmental isotopes may also be applied to enhance the understanding of the natural geochemical processes intrinsic to a given area. This study presents an environmental isotopes baseline for the groundwater and riverine water systems within the São Francisco Basin, a proven tight gas reservoir in Brazil, in a pre-operational context. δ18O, δ2H, 3H, δ13C, and Δ14C were evaluated in three different seasons in groundwater and surface water samples, along with other auxiliary parameters such as physical-chemical parameters (in situ), major ions, and d-excess. The δ2H and δ18O in surface water shows an upstream → downstream enrichment trend, with some variations suggesting baseflow interactions in the surface water systems. An evaporation line for the study area was defined as δ2H = 4.6903 δ18O + 10.362. δ13C indicates a mutual dissolution of silicates and carbonates in the groundwater system and suggests a group of samples highly related to the recharge areas. Groundwater dating denotes the Serra da Saudade Formation as a modern fractured aquifer with a strong recharge capacity. These findings support stakeholders in environmental monitoring and management of the unconventional gas industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lima_establishing_2023 Serial 173  
Permanent link to this record
 

 
Author (down) Li, J.; Pang, Z.; Liu, Y.; Hu, S.; Jiang, W.; Tian, L.; Yang, G.; Jiang, Y.; Jiao, X.; Tian, J. url  openurl
  Title Changes in groundwater dynamics and geochemical evolution induced by drainage reorganization: Evidence from 81Kr and 36Cl dating of geothermal water in the Weihe Basin of China Type Journal Article
  Year 2023 Publication Earth and Planetary Science Letters Abbreviated Journal  
  Volume 623 Issue Pages 118425  
  Keywords Kr dating, Cl dating, Geothermal water, Groundwater dynamics, Weihe basin  
  Abstract 81Kr and 36Cl can both be used to date groundwater beyond the dating range of 14C. 81Kr usually provides reliable groundwater ages because it has uniform initial distribution and negligible subsurface generation, while 36Cl is commonly influenced by subsurface sources or “dead” chloride dissolution. Therefore, the combined use of 81Kr and 36Cl could provide clues on the evolution history of groundwater. In the present study, we performed 36Cl and 81Kr dating of geothermal water in Weihe Basin of China and interpreted the possible cause of disagreement. Two distinct water masses were identified with distinctive isotopic signals: groundwater with significant δ18O shifts (up to −2.0‰), dissolved dead Cl and ages < 1.0 Ma (Cluster A), and older water with little δ18O shifts, negligible dissolved Cl and ages >1.0 Ma (Cluster B). The results confirm the eastward flow path of Cluster B to the Ancient Sanmen Lake with an increasing trend of Cl concentration and age. Modern recharge from the mountains flows to the basin center with intense interaction between water and carbonate under respective reservoir temperatures (100 ∼ 130 °C). These waters flow through the saline stratum emerging from the spillover of the Ancient Sanmen Lake, resulting in higher dead Cl dissolution. A significant linear relationship is observed with the older end-member of ∼1.3Ma under the topographically-driven faster circulation effect. 81Kr ages seem to support the hypothesis that the birth of the modern Yellow River was at about 1.0–1.3 Ma. We inferred the drainage reorganization from the Ancient Sanmen Lake to the modern Yellow River since the Mid-Pleistocene Transition induced the change in groundwater dynamics as well as its chemical evolution. The excavation of the Ancient Sanmen Lake and the accentuated incision of the Weihe River induced groundwater gradient, and therefore the recharge from precipitation from both slopes of the Qinling Mountains in the south and the Beishan Mountains in the north. Our results highlight the effects of dead Cl on 36Cl dating and demonstrate the significant impact of catchment reorganization on groundwater dynamics and its chemistry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-821x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Li2023118425 Serial 212  
Permanent link to this record
 

 
Author (down) Lawrinenko, M.; Kurwadkar, S.; Wilkin, R.T. url  openurl
  Title Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation – A mechanistic approach Type Journal Article
  Year 2023 Publication Geoscience Frontiers Abbreviated Journal  
  Volume 14 Issue 2 Pages 101494  
  Keywords Geochemistry, Iron, Permeable reactive barrier, Plating reactions, Reduction potential, Surface passivation  
  Abstract Permeable reactive barriers (PRBs) are used for groundwater remediation at contaminated sites worldwide. This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron (ZVI) as a reductant and as a reactive material. Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking. Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants. Additionally, there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time. In this review paper, we describe the underlying mechanisms of PRB performance and remove isolated misconceptions. We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products. We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs. Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI. Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity, which negatively impacts hydraulic conductivity, allowing contaminants to potentially bypass the treatment zone. Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-9871 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ lawrinenko_long-term_2023 Serial 143  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: