toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author N, D.; Panda, B.; S, C.; V, P.M.; Singh, D.K.; L, R.A.; Sahoo, S.K. url  openurl
  Title Spatio-temporal variations of Uranium in groundwater: Implication to the environment and human health Type Journal Article
  Year 2021 Publication Science of The Total Environment Abbreviated Journal  
  Volume 775 Issue Pages 145787  
  Keywords Groundwater, Health risk, Speciation, Stable isotopes, Statistics, Uranium  
  Abstract Groundwater overexploitation has resulted in huge scarcity and increase in the demand for water and food security in India. Groundwater in India has been observed to have experienced various water quality issues like arsenic, fluoride, and Uranium (U) contamination, leading to risk in human health. Markedly, the health risk of higher U in drinking water, as well as its chemical toxicity in groundwater have adverse effects on human. This study has reported occurrence of U as an emerging and widespread phenomenon in South Indian groundwater. Data on U in groundwater were generated from 284 samples along the Cretaceous Tertiary boundary within 4 seasons viz. pre-monsoon (PRM), southwest monsoon (SWM), northeast monsoon (NEM), and post-monsoon (POM). High U concentrations (74 μgL−1) showed to be above the World Health Organization’s provisional guideline value of 30 μgL−1. The geochemical, stable isotope and geophysical studies suggested that U in groundwater could vary with respect to season and was noted to be highest during NEM. The bicarbonate (HCO3) released by weathering process during monsoon could affect the saturation index (SI)Calcite and carbonate species of U. However, the primary source of U was found to be due to geogenic factors, like weathering, dissolution, and groundwater level fluctuation, and that, U mobilization could be enhanced due to anthropogenic activities. The findings further indicated that groundwater in the study area has reached the alarming stage of chemical toxicity. Hence, it is urgent and imperative that workable management strategies for sustainable drinking water source be developed and preventive measures be undertaken, relative to these water quality concerns to mitigate their disconcerting effect on human health.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ n_spatio-temporal_2021 Serial 146  
Permanent link to this record
 

 
Author Pontér, S.; Rodushkin, I.; Engström, E.; Rodushkina, K.; Paulukat, C.; Peinerud, E.; Widerlund, A. url  openurl
  Title Early diagenesis of anthropogenic uranium in lakes receiving deep groundwater from the Kiruna mine, northern Sweden Type Journal Article
  Year 2021 Publication Science of The Total Environment Abbreviated Journal  
  Volume 793 Issue Pages 148441  
  Keywords Isotope ratios, Mine water, Sediments, Uranium  
  Abstract The uranium (U) concentrations and isotopic composition of waters and sediment cores were used to investigate the transport and accumulation of U in a water system (tailings pond, two lakes, and the Kalix River) receiving mine waters from the Kiruna mine. Concentrations of dissolved U decrease two orders of magnitude between the inflow of mine waters and in the Kalix River, while the concentration of the element bound to particulate matter increases, most likely due to sorption on iron‑manganese hydroxides and organic matter. The vertical distribution of U in the water column differs between two polluted lakes with a potential indication of dissolved U supply from sediment’s pore waters at anoxic conditions. Since the beginning of exposure in the 1950s, U concentrations in lake sediments have increased \textgreater20-fold, reaching concentrations above 50 μg g-1. The distribution of anthropogenic U between the lakes does not follow the distribution of other mine water contaminants, with a higher relative proportion of U accumulating in the sediments of the second lake. Concentrations of redox-sensitive elements in the sediment core as well as Fe isotopic composition were used to re-construct past redox-conditions potentially controlling early diagenesis of U in surface sediments. Two analytical techniques (ICP-SFMS and MC-ICP-MS) were used for the determination of U isotopic composition, providing an extra dimension in the understanding of processes in the system. The (234 U)/(238 U) activity ratio (AR) is rather uniform in the tailings pond but varies considerably in water and lake sediments providing a potential tracer for U transport from the Kiruna mine through the water system, and U immobilization in sediments. The U mass balance in the Rakkurijoki system as well as the amount of anthropogenic U accumulated in lake sediments were evaluated, indicating the immobilization in the two lakes of 170 kg and 285 kg U, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ ponter_early_2021 Serial 154  
Permanent link to this record
 

 
Author Rallakis, D.; Michels, R.; Cathelineau, M.; Parize, O.; Brouand, M. url  openurl
  Title Conditions for uranium biomineralization during the formation of the Zoovch Ovoo roll-front-type uranium deposit in East Gobi Basin, Mongolia Type Journal Article
  Year 2021 Publication Ore Geology Reviews Abbreviated Journal  
  Volume 138 Issue Pages 104351  
  Keywords Bioreduction, East Gobi Basin, Mongolia, Organic matter, Roll-front, Sulfur isotopes, Uranium  
  Abstract The Zoovch Ovoo uranium roll-front-type deposit is hosted in the Sainshand Formation, a Late Cretaceous siliciclastic reservoir, which constitutes the upper part of the post-rift infilling of the Mesozoic East Gobi Basin in SE Mongolia. The Sainshand Formation consists of unconsolidated medium-grained sand, silt and clay intervals deposited in fluvial-lacustrine settings. The uranium deposit is confined within a 60–80 m thick siliciclastic sequence inside aquifer-driven systems. The overall system experienced shallow burial and was never subjected to temperatures higher than 40 °C. This study proposes a comprehensive metallogenic model for this uranium deposit. Sedimentological and mineralogical observations from drill core samples to the microscopic scale (optical and Scanning Electron Microscopy) together with in situ geochemistry of late-formed phases (Laser Ablation–Inductively Coupled Plasma Mass Spectrometry, Electron Probe Microanalysis, Fourier Transform–Infrared Spectroscopy) were considered for the reconstruction of the main stages of U trapping. In the mineralized zone, the uranium ore is expressed as Ca–enriched uraninite (UO2) and less commonly as Ca–enriched phospho-coffinite (U, P)SiO4. Trapping mechanisms include i) complexation (i.e. uranyl-carboxyl complexes), ii) adsorption on organic or clay particles) and iii) reduction by pyrite and by bacterial activity to amorphous uraninite. In all cases, the organic matter plays either the role of trap for uranium or nutrient for bacteria that can trap uranium through their metabolism. The shallow burial diagenesis conditions do not allow direct reduction of U(VI) by organic carbon. The δ34S values of the iron disulfide are very diverse, fluctuating in extreme cases between −50 to + 50‰, with an average δ34S value for framboidal pyrite at 2‰, and −20‰ for euhedral pyrite. The positive and negative values reflect close versus open fractionation systems, while bacterial sulphate reduction (BSR) is active during the whole diagenetic history of the deposit as an essential source of reduced sulfur. Therefore, using detrital organic matter as a carbon source, microorganisms play a significant role in uranium trapping, either as a direct reducing agent for uranium or pyrite formation, which will trap uranium through redox driven epigenetic processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-1368 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ rallakis_conditions_2021 Serial 176  
Permanent link to this record
 

 
Author Zeng, S.; Shen, Y.; Sun, B.; Zhang, N.; Zhang, S.; Feng, S. url  openurl
  Title Pore structure evolution characteristics of sandstone uranium ore during acid leaching Type Journal Article
  Year 2021 Publication Nuclear Engineering and Technology Abbreviated Journal  
  Volume 53 Issue 12 Pages 4033-4041  
  Keywords Acid method, In situ leaching, Nuclear magnetic resonance, Pore characteristic, Sandstone uranium ore  
  Abstract To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1738-5733 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number (up) THL @ christoph.kuells @ zeng_pore_2021 Serial 199  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: