|   | 
Details
   web
Records
Author Zwartendijk, B.W.; Ghimire C. P.; Ravelona M.; Lahitiana J.; van Meerveld H. J.
Title Hydrometric data and stable isotope data for streamflow and rainfall in the Marolaona catchment, Madagascar, 2015-2016 Type Miscellaneous
Year 2023 Publication Abbreviated Journal
Volume Issue Pages (up)
Keywords
Abstract
Address
Corporate Author Thesis
Publisher NERC EDS Environmental Information Data Centre Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ref10.5285/f93d87ed-7bc4-4d03-9690-3856e6cbbd11 Serial 289
Permanent link to this record
 

 
Author Holmes, M.; Campbell, E.E.; Wit, M. de; Taylor, J.C.
Title Can diatoms be used as a biomonitoring tool for surface and groundwater?: Towards a baseline for Karoo water Type Journal Article
Year 2023 Publication South African Journal of Botany Abbreviated Journal
Volume 161 Issue Pages (up) 211-221
Keywords Bioindicator, Diatom, Hydraulic fracturing, Karoo, Water quality
Abstract The environmental risks from shale gas extraction through the unconventional method of ‘fracking’ are considerable and impact on water supplies below and above ground. Since 2010 the recovery of natural shale gas through fracking has been proposed in parts of the fragile semi-arid ecosystems that make up the Karoo biome in South Africa. These unique ecosystems are heavily reliant on underground water, intermittent and ephemeral springs, which are at great risk of contamination by fracking processes. Diatoms are present in all water bodies and reflect aspects of the environment in which they are located. As the possibility of fracking has not been removed, the aim of the project was to determine if diatoms could be used for rapid biomonitoring of underground and surface waters in the Karoo. Over a period of 24 months, water samples and diatom species were collected simultaneously from 65 sites. A total of 388 diatom taxa were identified from 290 samples with seasonal and substrate variation affecting species composition but not the environmental information. Species diversity information, on the other hand, often varied significantly between substrates within a single sample. Analysis using CCA established that the diatom composition was affected by lithium, oxidized nitrogen, electrical conductivity, and sulphate levels in the sampled water. We conclude that changes in diatom community composition in the Karoo do reflect the water chemistry and could be useful as bioindicators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0254-6299 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ holmes_can_2023 Serial 163
Permanent link to this record
 

 
Author Hdeib, R.; Aouad, M.
Title Rainwater harvesting systems: An urban flood risk mitigation measure in arid areas Type Journal Article
Year 2023 Publication Water Science and Engineering Abbreviated Journal
Volume 16 Issue 3 Pages (up) 219-225
Keywords Rainwater harvesting, Urban floods, Flood map, Hydrodynamic model, Built environment, Arid areas
Abstract Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a two-dimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-2370 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Hdeib2023219 Serial 242
Permanent link to this record
 

 
Author Zeng, S.; Song, J.; Sun, B.; Wang, F.; Ye, W.; Shen, Y.; Li, H.
Title Seepage characteristics of the leaching solution during in situ leaching of uranium Type Journal Article
Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal
Volume 55 Issue 2 Pages (up) 566-574
Keywords In situ leaching, Leaching solution viscosity, Seepage characteristics, Seepage pressure, Uranium-bearing sandstone
Abstract Investigating the seepage characteristics of the leaching solution in the ore-bearing layer during the in situ leaching process can be useful for designing the process parameters for the uranium mining well. We prepared leaching solutions of four different viscosities and conducted experiments using a self-developed multifunctional uranium ore seepage test device. The effects of different viscosities of leaching solutions on the seepage characteristics of uranium-bearing sandstones were examined using seepage mechanics, physicochemical seepage theory, and dissolution erosion mechanism. Results indicated that while the seepage characteristics of various viscosities of leaching solutions were the same in rock samples with similar internal pore architectures, there were regular differences between the saturated and the unsaturated stages. In addition, the time required for the specimen to reach saturation varied with the viscosity of the leaching solution. The higher the viscosity of the solution, the slower the seepage flow from the unsaturated stage to the saturated stage. Furthermore, during the saturation stage, the seepage pressure of a leaching solution with a high viscosity was greater than that of a leaching solution with a low viscosity. However, the permeability coefficient of the high viscosity leaching solution was less than that of a low viscosity leaching solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1738-5733 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ zeng_seepage_2023 Serial 211
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D.
Title Water harvesting Type Book Chapter
Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal
Volume Issue Pages (up) 593-607
Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security
Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.
Address
Corporate Author Thesis
Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-323-95133-3 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 225
Permanent link to this record
 

 
Author Mekuria, W.; Tegegne, D.
Title Water harvesting Type Book Chapter
Year 2023 Publication Encyclopedia of Soils in the Environment (Second Edition) Abbreviated Journal
Volume Issue Pages (up) 593-607
Keywords Climate change, Ecosystem services, Environmental benefits, Population growth, Resilient community, Resilient environment, Socio-economic benefits, Urbanizations, Water harvesting, Water quality, Water security
Abstract Water harvesting is the intentional collection and concentration of rainwater and runoff to offset irrigation demands. Secondary benefits include decreased flood and erosion risk. Water harvesting techniques include micro- and macro-catchment systems, floodwater harvesting, and rooftop and groundwater harvesting. The techniques vary with catchment type and size, and the method of water storage. Micro-catchment water harvesting, for example, requires the development of small structures and targets increased water delivery and storage to the root zone whereas macro-catchment systems collect runoff water from large areas. The sustainability of water harvesting techniques at the local level are usually constrained by several factors such as labor, construction costs, loss of productive land, and maintenance, suggesting that multiple solutions are required to sustain the benefits of water harvesting techniques.
Address
Corporate Author Thesis
Publisher Academic Press Place of Publication Oxford Editor Goss, M.J.; Oliver, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-323-95133-3 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Mekuria2023593 Serial 265
Permanent link to this record
 

 
Author Liu, Z.; Tan, K.; Li, C.; Li, Y.; Zhang, C.; Song, J.; Liu, L.
Title Geochemical and S isotopic studies of pollutant evolution in groundwater after acid in situ leaching in a uranium mine area in Xinjiang Type Journal Article
Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal
Volume 55 Issue 4 Pages (up) 1476-1484
Keywords Acid in situ leaching of uranium, Pollution evolution, Sulfate elimination, Sulfur isotopes analysis
Abstract Laboratory experiments and point monitoring of reservoir sediments have proven that stable sulfate reduction (SSR) can lower the concentrations of toxic metals and sulfate in acidic groundwater for a long time. Here, we hypothesize that SSR occurred during in situ leaching after uranium mining, which can impact the fate of acid groundwater in an entire region. To test this, we applied a sulfur isotope fractionation method to analyze the mechanism for natural attenuation of contaminated groundwater produced by acid in situ leaching of uranium (Xinjiang, China). The results showed that δ34S increased over time after the cessation of uranium mining, and natural attenuation caused considerable, area-scale immobilization of sulfur corresponding to retention levels of 5.3%–48.3% while simultaneously decreasing the concentration of uranium. Isotopic evidence for SSR in the area, together with evidence for changes of pollutant concentrations, suggest that area-scale SSR is most likely also important at other acid mining sites for uranium, where retention of acid groundwater may be strengthened through natural attenuation. To recapitulate, the sulfur isotope fractionation method constitutes a relatively accurate tool for quantification of spatiotemporal trends for groundwater during migration and transformation resulting from acid in situ leaching of uranium in northern China.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1738-5733 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ liu_geochemical_2023 Serial 192
Permanent link to this record
 

 
Author Zhao, Y.; Li, X.; Lei, L.; Chen, L.; Luo, Z.
Title Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration Type Journal Article
Year 2023 Publication Journal of Rock Mechanics and Geotechnical Engineering Abbreviated Journal
Volume 15 Issue 10 Pages (up) 2597-2610
Keywords Chemical reactive rate, Low-frequency vibration, Low-permeability sandstone, Optimum permeability, Permeability evolution mechanism, Uranium migration
Abstract Low-frequency vibrations can effectively improve natural sandstone permeability, and higher vibration frequency is associated with larger permeability. However, the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined. To solve the above problems, in this study, identical homogeneous sandstone samples were selected to simulate low-permeability sandstone; a permeability evolution model considering the combined action of vibration stress, pore water pressure, water flow impact force, and chemical erosion was established; and vibration leaching experiments were performed to test the model accuracy. Both the permeability and chemical reactions were found to simultaneously restrict U6+ leaching, and the vibration treatment increased the permeability, causing the U6+ leaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate. Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion, to prove the correctness of the mechanism according to the experimental results, and to develop a new method for determining the optimum permeability in uranium leaching. The uranium leaching was found to primarily follow a process consisting of (1) a permeability control stage, (2) achieving the optimum permeability, (3) a chemical reactive rate control stage, and (4) a channel flow stage. The resolution of these problems is of great significance for facilitating the application and promotion of low-frequency vibration in the CO2 + O2 leaching process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-7755 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ zhao_permeability_2023 Serial 198
Permanent link to this record
 

 
Author Wang, W.; Liang, X.; Niu, Q.; Wang, Q.; Zhuo, J.; Su, X.; Zhou, G.; Zhao, L.; Yuan, W.; Chang, J.; Zheng, Y.; Pan, J.; Wang, Z.; Ji, Z.
Title Reformability evaluation of blasting-enhanced permeability in in situ leaching mining of low-permeability sandstone-type uranium deposits Type Journal Article
Year 2023 Publication Nuclear Engineering and Technology Abbreviated Journal
Volume 55 Issue 8 Pages (up) 2773-2784
Keywords Analytic hierarchy process-entropy method, Fuzzy mathematics method, Mechanical property, Mineral composition, Pore structure, Split Hopkinson pressure bar
Abstract It is essential to evaluate the blasting-enhanced permeability (BEP) feasibility of a low-permeability sandstone-type uranium deposit. In this work, the mineral composition, reservoir physical properties and rock mechanical properties of samples from sandstone-type uranium deposits were first measured. Then, the reformability evaluation method was established by the analytic hierarchy process-entropy weight method (AHP-EWM) and the fuzzy mathematics method. Finally, evaluation results were verified by the split Hopkinson Pressure Bar (SHPB) experiment and permeability test. Results show that medium sandstone, argillaceous sandstone and siltstone exhibit excellent reformability, followed by coarse sandstone and fine sandstone, while the reformability of sandy mudstone is poor and is not able to accept BEP reservoir stimulation. The permeability improvement and the distribution of damage fractures before and after the SHPB experiment confirm the correctness of evaluation results. This research provides a reformability evaluation method for the BEP of the low-permeability sandstone-type uranium deposit, which contributes to the selection of the appropriate regional and stratigraphic horizon of the BEP and the enhanced ISL of the low-permeability sandstone-type uranium deposit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1738-5733 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ wang_reformability_2023 Serial 194
Permanent link to this record
 

 
Author Petisco-Ferrero, S.; Idoeta, R.; Rozas, S.; Olondo, C.; Herranz, M.
Title Radiological environmental monitoring of groundwater around NPP: A proposal for its assessment Type Journal Article
Year 2023 Publication Heliyon Abbreviated Journal
Volume 9 Issue 9 Pages (up) 19470
Keywords Detection limit, Nuclear power plant dismantling and decommissioning, Radiological environmental monitoring, Radionuclides in groundwater
Abstract Whether a nuclear installation has radiological impact and, in that case, its extension, are the questions behind any environmental analysis of the installation along its operational life. This analysis is based on the detailed establishment of the radiological background of the area. Accordingly, the dismantling and decommissioning process (D&D) of a nuclear power plant starts with a radiological monitoring plan, which includes the radiological characterization of the area and of its surroundings. At the completion of the D&D, unrestricted use for the site will be permitted strictly in accordance with results of the radiological survey within the limits established by the local authorities. Groundwater quality is typically included in any radiological analysis since, among other reasons, a significant part of it is highly likely to end up being extracted for domestic use and hence, human consumption. While there is no regulation containing maximum activity concentration or radionuclide guidance values for water that may be destined for uses other than public consumption, if groundwater is considered a “part” of the land, dose criteria for site release can be applied. Therefore, together with the guidance levels to be established for the different radionuclides expected in the groundwater, the detection limits to be employed when performing routine radio analytical characterization procedures in the laboratory should also be provided. In this paper, we first propose a relation of the potential radionuclides to be analyzed in groundwater, together with their detection limits to be achieved when the determinations are performed in a laboratory, and subsequently, we discuss the most suitable analytical methodologies and resources that would be necessary to undertake radiological characterization plans from a practical point of view.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2405-8440 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ petisco-ferrero_radiological_2023 Serial 133
Permanent link to this record