|   | 
Details
   web
Records
Author Ruiz, O.; Thomson, B.; Cerrato, J.M.; Rodriguez-Freire, L.
Title Groundwater restoration following in-situ recovery (ISR) mining of uranium Type Journal Article
Year 2019 Publication Applied Geochemistry Abbreviated Journal
Volume 109 Issue Pages (up) 104418
Keywords Aquifer stabilization, Ground water restoration, In-situ leach mining, In-situ recovery, Uranium
Abstract From 1950 through the early 1980’s New Mexico accounted for roughly half of domestic uranium (U) production for the nuclear power industry and the nation’s weapon programs. Increased interest in nuclear energy has led to proposals for renewed development using both underground mining and uranium in situ recovery (ISR). When feasible, ISR greatly reduces waste generated by the mining and milling processes, however, the ability to restore ground water to acceptable quality after ISR ends is uncertain. This research investigated two methods of stabilizing an aquifer following ISR. Batch and column studies were performed to evaluate chemical and biological methods of stabilization. Columns packed with ore were first leached with an aerated NaHCO3 ground water solution to simulate ISR. Constituents present at elevated concentrations after leaching included molybdenum (Mo), selenium (Se), U, and vanadium (V). Chemical stabilization was studied by passing a phosphate (PO43-) amended solution through the ore to achieve passivation of mineral surfaces by P precipitates. Microbial stabilization was studied by passing a lactate solution through the ore to stimulate growth of anaerobic metal- and sulfate-reducing organisms to reduce U and other elements to less soluble phases. Analyses of the solids from the columns after completion of these experiments by X-ray photo electron spectroscopy (XPS) identified phosphate on samples near the column inlet of the chemically stabilized columns. Microbial populations were characterized by Illumina DNA sequencing and confirmed the presence of metal- and sulfate-reducing organisms. Neither chemical nor microbial stabilization method achieved contaminant immobilization, which is believed due to limited mixing of the stabilization solutions with the contaminated leach solutions. These results emphasize that ground water hydrodynamics, especially mixing, must be considered in aquifer restoration of soluble constituents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ruiz_groundwater_2019 Serial 153
Permanent link to this record
 

 
Author Hofmann, H.; Pearce, J.K.; Hayes, P.; Golding, S.D.; Hall, N.; Baublys, K.A.; Raiber, M.; Suckow, A.
Title Multi-tracer approach to constrain groundwater flow and geochemical baseline assessments for CO2 sequestration in deep sedimentary basins Type Journal Article
Year 2023 Publication International Journal of Coal Geology Abbreviated Journal
Volume Issue Pages (up) 104438
Keywords CO geological storage, Great Artesian Basin, Groundwater chemistry, Isotopic tracer, Surat Basin
Abstract Geological storage of gases will be necessary in the push to net zero and the energy transition to reduce carbon emissions to atmosphere. These include CO2 geological storage in suitable sandstone reservoirs. Understanding groundwater flow, connectivity and hydrogeochemical processes in aquifer and storage systems is vital to prevent risk and protect important water resources, such as the Great Artesian Basin. Here, we provide a ‘tool-box’ of geochemical assessment methods to provide information on flow patterns through the basin’s aquifers (changes in chemistry along flow path), stagnant versus flowing conditions (cosmogenic isotopes and noble gases), inter-aquifer connectivity and seal properties (major ions, Sr and stable isotopes), water quality (major ions and metals) and general assessments on residence times of groundwater (cosmogenic isotopes and noble gases). This information can be used with reservoir and groundwater models to inform on possible changes in the above-mentioned processes and serve as input parameters for CO2 injection impact modelling. We demonstrate the use and interpretation on an example of a potential CO2 storage geological sequestration site in the Surat Basin, part of the Great Artesian Basin, and the aquifers that overly the reservoir. The stable water isotopes are depleted compared to average rainfall and most likely indicate greater contributions from monsoonal rain events from the northern monsoonal troughs, where amount and rainout effects lead to the depletion rather than colder recharge climates. This is supported by the modern recharge temperatures from noble gases. Inter-aquifer mixing between the Precipice Sandstone reservoir and the Hutton Sandstone aquifer seems unlikely as the Sr isotope ratios are distinctly different suggesting that the Evergreen Formation is a seal in the locations sampled. Mixing, however, occurs on the edges of the basin, especially in the south-east and east where the Surat Basin transitions into the Clarence-Moreton Basin. Groundwater flow appears to be to the south in the Precipice Sandstone, with a component of flow east to the Clarence-Morton Basin. The cosmogenic isotopes and noble gases strongly indicate very long residence times of groundwater in the central south Precipice Sandstone around a proposed storage site. 14C values below analytical uncertainty, R36Cl ratios at secular equilibrium as well as high He concentrations and high 40Ar/36Ar ratios support the argument that groundwater flow in this area is extremely slow or groundwater is stagnant. The results of this study reflect the geological and hydrogeological complexities of sedimentary basins and that baseline studies, such as this one, are paramount for management strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-5162 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hofmann_multi-tracer_2023 Serial 165
Permanent link to this record
 

 
Author Christofi, C.; Bruggeman, A.; Külls, C.; Constantinou, C.
Title Hydrochemical evolution of groundwater in gabbro of the Troodos Fractured Aquifer. A comprehensive approach Type Journal Article
Year 2020 Publication Applied Geochemistry Abbreviated Journal
Volume 114 Issue Pages (up) 104524
Keywords geochemistry
Abstract
Address
Corporate Author Thesis
Publisher Pergamon Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Christofi2020hydrochemical Serial 13
Permanent link to this record
 

 
Author Ren, Y.; Yang, X.; Hu, X.; Wei, J.; Tang, C.
Title Mineralogical and geochemical evidence for biogenic uranium mineralization in northern Songliao Basin, NE China Type Journal Article
Year 2022 Publication Ore Geology Reviews Abbreviated Journal
Volume 141 Issue Pages (up) 104556
Keywords Bacterial sulfate reduction, In-situ S isotope of pyrite, Northern Songliao basin, Sandstone-type uranium deposit, Sifangtai Formation
Abstract The sandstone-hosted uranium mineralization areas in the Sanzhao Sag of the northern Songliao Basin have been newly identified. The target stratum is the Upper Cretaceous Sifangtai Formation and the uranium mineralization mainly occurs in the bottom of Sifangtai Formation, corresponding to channel sand bodies in meandering river system, characterized by medium to fine-grained sandstone. This study proposes the uranium metallogenic model through petrographic observation, whole rock geochemistry, mineralogical study of uranium occurrence form (SEM), organic matter rock–eval pyrolysis analysis (REP) and in-situ sulfur isotope determination of different generations of pyrite by LA-MC-ICP-MS. Compared with the sandstones collected in barren reduction and oxidization zones, the mineralized sandstones show obvious increase in the contents of TOC, total sulfur, Y and U. Petrographic observations indicate that organic matters are mainly inherited from land plants. REP data display that the organic matter (OM) disseminated in the sandstone has very low hydrogen index (HI) from around 0 to 21 mg HC/g TOC and varied oxygen index (OI) from 44 to 115 mg CO2/g TOC, corresponding to Type Ⅳ kerogen (degraded kerogen). There are two types of coffinite with different grain size, micro-particles (μm-sized) and large aggregates (generally up to 100 μm) respectively. The coffinite micro spherules exhibit short rod-like or worm-like morphology occurring in clay matrix and cell cavities in degradofusinite or around subidiomorphic-idiomorphic pyrite. The coarse-grained coffinite contains other mineral facies (e.g. pyrite, quartz) and some of large coffinite aggregates display thrombolite-type microbial structures. The irregular pyrite relict particles in coarse-grained colloidal coffinite have light sulfur isotope compositions characterized by δ34S values from –39.96‰ to –49.89‰. The δ34S values of colloidal pyrite in replacement of OM or of the sub-idiomorphic FeS2 cement filling in the cavities of OM range from –52.77‰ to –13.88‰. Some of sub-idiomorphic pyrite cement and idiomorphic crystal have the heavier signature from – 27.06‰ to + 14.23‰. The light sulfur isotope signature suggests that the sulfur originates from bacterial sulfate reduction (BSR). The OM replacement by pyrite and the highest OI values recorded by REP in uranium mineralized samples are lines of evidence of biodegradation. Bacteria use the organic matter as food source and produce isotopically light reduced sulfur species. Oxygenated uranium-bearing waters infiltrated through the denudated windows at Daqing placanticline into the porous reduced sandstones deposited in the Sanzhao Sag. Uranium was indirectly reduced by BSR-derived iron disulfides or directly reduced by sulfate-reducing bacteria.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ ren_mineralogical_2022 Serial 144
Permanent link to this record
 

 
Author Gardiner, J.; Thomas, R.B.; Phan, T.T.; Stuckman, M.; Wang, J.; Small, M.; Lopano, C.; Hakala, J.A.
Title Utilization of produced water baseline as a groundwater monitoring tool at a CO2-EOR site in the Permian Basin, Texas, USA Type Journal Article
Year 2020 Publication Applied Geochemistry Abbreviated Journal
Volume 121 Issue Pages (up) 104688
Keywords CO storage, Enhanced oil recovery, Geochemical baseline, Groundwater monitoring, Produced water, Solubility trapping
Abstract Carbon dioxide (CO2) enhanced oil recovery (EOR) provides a pathway for economic reuse and storage of CO2, a greenhouse gas. One challenge with this practice is ensuring CO2 injection does not result in target reservoir fluids migrating into overlying shallow (\textless1000 m) groundwater formations. Effective monitoring for leakage from storage formations could involve measuring sensitive chemical indicators in overlying groundwater units and within the producing formation itself for evidence of deviation from an initial state. In this study, produced waters and overlying groundwaters were monitored over a five-year period to evaluate which geochemical signals may be useful to ensure that oilfield produced waters did not impact overlying groundwaters. During this five-year period, a mature carbonate oil reservoir in the Permian Basin transitioned from a waterflooding operation to a water-alternating-gas injection (WAG), in which the formation was flooded with CO2 and various mixtures of produced water. Significant increases in dissolved inorganic constituents [alkalinity, TDS, Na+, Cl−, SO42−] were observed in produced waters following CO2 injection; however, carbonate reservoir dissolution-precipitation reactions appear to be minimal and injected CO2 appears to be stored via solubility trapping. Although there are statistically significant geochemical variations following CO2 injection, applying isometric log-ratios to certain parameters establishes a narrow range for post-CO2 injection produced waters. This narrow range can be considered a baseline for post-CO2 injection produced waters; this baseline can be utilized to monitor overlying local groundwaters for produced water intrusion. Additionally, certain parameters [Na+, Ca2+, K+, Cl−, alkalinity, and TDS] display large concentration disparities between produced water and overlying groundwaters; these parameters would be sensitive indicators of produced water intrusion into overlying groundwaters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ gardiner_utilization_2020 Serial 171
Permanent link to this record