toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Grozeva, N.G.; Radwan, J.; Beaucaire, C.; Descostes, M. url  openurl
  Title Reactive transport modeling of U and Ra mobility in roll-front uranium deposits: Parameters influencing 226Ra/238U disequilibria Type Journal Article
  Year 2022 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 236 Issue Pages 106961  
  Keywords Ra/U, Radioactive disequilibria, Radium, Reactive transport modeling, Roll-front uranium deposit  
  Abstract Uranium reserve estimates in ore deposits can be significantly impacted by 226Ra/238U disequilibria arising from the differential mobility of uranium and radium during groundwater transport. 1D reactive transport models were developed to investigate the long-term effects of retention processes (UO2(am) precipitation, U(VI) and Ra sorption on smectite, Ra co-precipitation with barite) on the repartitioning of 238U and 226Ra during formation of roll-front type deposits. Analytical solutions to radioactive decay chains were used in complement to examine the influence of geochemical parameters, including fluid 234U/238U activity ratios and α-recoil loss, on 226Ra/238U disequilibria in uranium ores. Model results demonstrate that smectite and barite can produce 226Ra/238U ratios \textgreater1 at low uranium contents and may explain 226Ra/238U disequilibria occurring in altered rock up- and downstream of roll-front deposits. The capacity of these phases to take up Ra and generate 226Ra/238U disequilibria depends on both mineral contents and groundwater compositions, and is thus expected to be site-specific. Simulations of ore deposits that advance downstream with time demonstrate the formation of stronger 226Ra/238U disequilibria, as expected, in the downgradient side or nose of the ore, reflecting both younger mineralization ages and the presence of active uranium precipitation. Whether disequilibria are positive or negative with respect to secular equilibrium, however, depends on the 234U/238U activity ratio in the fluid from which uranium minerals precipitate. Smaller hydraulic conductivities are shown to generate a narrower range in 226Ra/238U activity ratios with distance, and may explain the occurrence of disequilibria in the limb ore that are less pronounced than those in the nose. Furthermore, the ability of α-recoil loss to decrease 226Ra/238U activity ratios at secular equilibrium may account for negative disequilibria in high grade ores. The South Tortkuduk uranium deposits (Kazakhstan) are subsequently used as a case study to identify the processes and parameters that may contribute to 226Ra/238U disequilibria at this site. Variations in multiple parameters, including clay contents, barite contents, and mineralization ages, are found to reproduce measured 226Ra/238U activity ratios in the roll-front ore. Prioritization of these parameters will necessitate field measurements targeting both groundwater fluids and the host rock. Results from this study will ultimately aid geologists in building appropriate hydrogeochemical data sets to more efficiently locate and exploit uranium ore deposits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ grozeva_reactive_2022 Serial 180  
Permanent link to this record
 

 
Author Boulesteix, T.; Cathelineau, M.; Deloule, E.; Brouand, M.; Toubon, H.; Lach, P.; Fiet, N. url  openurl
  Title Ilmenites and their alteration products, sinkholes for uranium and radium in roll-front deposits after the example of South Tortkuduk (Kazakhstan) Type Journal Article
  Year 2019 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 206 Issue Pages 106343  
  Keywords  
  Abstract The approximate determination of average Ra/U disequilibria in orebodies is one of the most common causes of errors in U reserve estimations. In roll-front deposits, the disequilibria are however frequently distributed following complex geometries, which must be fully understood to prevent major U reserve overestimates and costly unproductive extractive operations. The processes responsible for disruption of the radioactive equilibria and the U and Ra carriers in such complex natural systems remain poorly constrained. In this contribution, we propose an innovative approach, mixing orebody to sub-grain scale studies to unravel the distribution of U and Ra and the processes responsible for their concentration and uncoupling. Using mineral separations, gamma spectrometry and mineral-chemical analyses, we identified the Fe-Ti clusters (altered ilmenite + pyrite/marcasite) as the microsites for coffinite precipitation and Ra concentration. To understand the influence of such clusters on the distribution of U and Ra at the deposit scale, whole-rock Ra/U disequilibria were measured and mapped at a series of ten drill holes along a profile crosscutting the studied roll-front. The main Ra/U disequilibria are encountered around the mineralization in low U content zones. They are controlled by two main processes. (1) In the oxidized zones, the immobility of 230Th with respect to the U produces patches of Ra disequilibria (carried by the altered U minerals). (2) In the immediate vicinity of the roll-front, the dissolution of the mineralization produces an Ra flux trapped by the alteration products of ilmenites, as definitely confirmed by direct SIMS measurements. Such a process is responsible for the Ra disequilibria envelope located downstream of the richest ores, also known as Ra halo. The highest Ra/U ratios correspond to oxidized upstream samples, but most other high Ra/U ratios are from reduced downstream samples close to the mineralization. Such a low to medium U content envelope with high Ra/U ratios constitutes the main cause of U reserve overestimations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ boulesteix_ilmenites_2019 Serial 181  
Permanent link to this record
 

 
Author Hebert, B.; Baron, F.; Robin, V.; Lelievre, K.; Dacheux, N.; Szenknect, S.; Mesbah, A.; Pouradier, A.; Jikibayev, R.; Roy, R.; Beaufort, D. url  openurl
  Title Quantification of coffinite (USiO4) in roll-front uranium deposits using visible to near infrared (Vis-NIR) portable field spectroscopy Type Journal Article
  Year 2019 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 199 Issue Pages 53-59  
  Keywords Coffinite, Mineral quantification, Near infrared, Ore exploration, Portable field spectroscopy, Roll-front deposits  
  Abstract Coffinite (USiO4) is a common uranium-bearing mineral of roll-front uranium deposits. This mineral can be identified by the visible near infrared (Vis-NIR) portable field spectrometers used in mining exploration. However, due to the low detection limits and associated errors, the quantification of coffinite abundance in the mineralized sandstones or sandy sediments of roll-front uranium deposits using Vis-NIR spectrometry requires a specific methodological development. In this study, the 1135 nm absorption band area is used to quantify the abundance of coffinite. This absorption feature does not interfere with NIR absorption bands of any other minerals present in natural sands or sandstones of uranium roll-front deposits. The correlation between the 1135 nm band area and coffinite content was determined from a series of spectra measured from prepared mineral mixtures. The samples were prepared with a range of weighted amounts of arenitic sands and synthetic coffinite simulating the range of uranium concentration encountered in roll-front uranium deposits. The methodology presented in this study provides the quantification of the coffinite content present in sands between 0.03 wt% to 1 wt% coffinite with a detection limit as low as 0.005 wt%. The integrated area of the 1135 nm band is positively correlated with the coffinite content of the sand in this range, showing that the method is efficient to quantify coffinite concentrations typical of roll-front uranium deposits. The regression equation defined in this study was then used as a reference to predict the amount of natural coffinite in a set of mineralized samples from the Tortkuduk uranium roll-front deposit (South Kazakhstan).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ hebert_quantification_2019 Serial 184  
Permanent link to this record
 

 
Author Bullock, L.A.; Parnell, J. url  openurl
  Title Selenium and molybdenum enrichment in uranium roll-front deposits of Wyoming and Colorado, USA Type Journal Article
  Year 2017 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 180 Issue Pages 101-112  
  Keywords Molybdenum, Roll-fronts, Selenium, Tellurium, Uranium, Wyoming  
  Abstract Sandstone uranium (U) roll-front deposits of Wyoming and Colorado (USA) are important U resources, and may provide a terrestrial source for critical accessory elements, such as selenium (Se), molybdenum (Mo), and tellurium (Te). Due to their associated toxicity, MoSeTe occurrences in roll-fronts should also be carefully monitored during U leaching and ore processing. While elevated MoSe concentrations in roll-fronts are well established, very little is known about Te occurrence in such deposits. This study aims to establish MoSeTe concentrations in Wyoming and Colorado roll-fronts, and assess the significance of these deposits in an environmental and mineral exploration context. Sampled roll-front deposits, produced by oxidized groundwater transportation through a sandstone, show high MoSe content in specific redox zones, and low Te, relative to crustal means. High Se concentrations (up to 168ppm) are restricted to a narrow band of alteration at the redox front. High Mo content (up to 115ppm) is typically associated with the reduced mineralized nose and seepage zones of the roll-front, ahead of the U orebody. Elevated trace element concentrations are likely sourced from proximal granitic intrusions, tuffaceous deposits, and local pyritic mudstones. Elevated MoSe content in the sampled roll fronts may be regarded as a contaminant in U in-situ recovery and leaching processing, and may pose an environmental threat in groundwaters and soils, so extraction should be carefully monitored. The identification of peak concentrations of MoSe can also act as a pathfinder for the redox front of a roll-front, and help to isolate the U orebody, particularly in the absence of gamma signatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ bullock_selenium_2017 Serial 189  
Permanent link to this record
 

 
Author Kharaka, Y.; Harmon, R.; Darling, G. url  openurl
  Title W. Mike Edmunds (1941–2015) Type Journal Article
  Year 2015 Publication Applied Geochemistry Abbreviated Journal  
  Volume 59 Issue Pages 225-226  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ kharaka_w_2015 Serial 103  
Permanent link to this record
 

 
Author Castro, M.C.; Stute, M.; Schlosser, P. url  openurl
  Title Comparison of 4He ages and 14C ages in simple aquifer systems: implications for groundwater flow and chronologies Type Journal Article
  Year 2000 Publication Applied Geochemistry Abbreviated Journal  
  Volume 15 Issue 8 Pages 1137-1167  
  Keywords  
  Abstract 4He concentrations in excess of the solubility equilibrium with the atmosphere by up to two to three orders of magnitude are observed in the Carrizo Aquifer in Texas, the Ojo Alamo and Nacimiento aquifers in the San Juan Basin, New Mexico, and the Auob Sandstone Aquifer in Namibia. A simple 4He accumulation model is applied to explain these excess 4He concentrations in terms of both in situ production and a crustal flux across the bottom layer of the aquifer. Results from the model simulations suggest variability in the 4He fluxes, ranging from 6×10−6 cm3 STP cm−2 yr−1 for the Auob Sandstone Aquifer to 3.6×10−7 cm3 STP cm−2 yr−1 for the Carrizo aquifer. For the Ojo Alamo and Nacimiento aquifers an intermediate value of 3×10−6 cm3 STP cm−2 yr−1 was estimated. The contribution of in-situ produced 4He to the measured concentrations was also estimated. This contribution is negligible for the Auob Sandstone Aquifer as compared with both the concentrations measured at the top and bottom of the aquifer for most of the pathway. In the Carrizo aquifer, in-situ produced 4He contributes 27.5% and 15.4%, to the total 4He observed at the top and bottom of the aquifer, respectively. For both aquifers of the San Juan Basin in-situ production almost entirely dominates the 4He concentrations at the top of the aquifer for most of the pathway. In contrast, the internal production is negligible as compared with the measured concentrations at the bottom of these aquifers, reaching, at most, 1.1%. The model simulations require an exponential decrease in the horizontal velocity of the water with increasing recharge distance to reproduce the distribution of 4He in these aquifers. For the Auob Sandstone Aquifer the highest range in the velocity values is obtained (25 to 0.4 m yr−1). The simulations for the Carrizo aquifer and both aquifers located in the San Juan Basin require velocities varying from 4 to 0.1 m yr−1, and from 2 to 0.3 m yr−1, respectively. For each aquifer, average permeability values were also estimated. They are generally in agreement with results obtained from pumping tests, hydrodynamic modeling and previous 14C measurements. On the basis of the results obtained by calibrating the model with the measured 4He concentrations, the mean water residence times were estimated. They agree reasonably well with 14C ages. When applied as chronologies for noble gas temperatures in the same aquifers, the calculated 4He ages allow the identification of three different climate periods similar to those previously identified using 14C ages: (1) the Holocene period (0–10 Ka BP), (2) the Last Glacial Maximum (≈18 Ka BP), and (3) the preceeding period (30–150 Ka BP).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ castro_comparison_2000 Serial 109  
Permanent link to this record
 

 
Author Priestley, S.C.; Payne, T.E.; Harrison, J.J.; Post, V.E.A.; Shand, P.; Love, A.J.; Wohling, D.L. url  openurl
  Title Use of U-isotopes in exploring groundwater flow and inter-aquifer leakage in the south-western margin of the Great Artesian Basin and Arckaringa Basin, central Australia Type Journal Article
  Year 2018 Publication Applied Geochemistry Abbreviated Journal  
  Volume 98 Issue Pages 331-344  
  Keywords Activity ratios, Central Australia, Great Artesian Basin, Hydrogeology, Sequential extraction, Uranium isotopes  
  Abstract The distribution of uranium isotopes (238U and 234U) in groundwaters of the south-western margin of the Great Artesian Basin (GAB), Australia, and underlying Arckaringa Basin were examined using groundwater samples and a sequential extraction of aquifer sediments. Rock weathering, the geochemical environment and α-recoil of daughter products control the 238U and 234U isotope distributions giving rise to large spatial variations. Generally, the shallowest aquifer (J aquifer) contains groundwater with higher 238U activity concentrations and 234U/238U activity ratios close to secular equilibrium. However, the source input of uranium is spatially variable as intermittent recharge from ephemeral rivers passes through rocks that have already undergone extensive weathering and contain low 238U activity concentrations. Other locations in the J aquifer that receive little or no recharge contain higher 238U activity concentrations because uranium from localised uranium-rich rocks have been leached into solution and the geochemical environment allows the uranium to be kept in solution. The geochemical conditions of the deeper aquifers generally result in lower 238U activity concentrations in the groundwater accompanied by higher 234U/238U activity ratios. The sequential extraction of aquifer sediments showed that α-recoil of 234U from the solid mineral phases into the groundwater, rather than dissolution of, or exchange with the groundwater accessible minerals in the aquifer, caused enrichment of groundwater 234U/238U activity ratios in the Boorthanna Formation. Decay of 238U in uranium-rich coatings on J aquifer sediments caused resistant phase 234U/238U activity ratio enrichment. The groundwater 234U/238U activity ratio is dependent on groundwater residence time or flow rate, depending on the flow path trajectory. Thus, uranium isotope variations confirmed earlier groundwater flow interpretations based on other tracers; however, spatial heterogeneity, and the lack of clear regional correlations, made it difficult to identify recharge and inter-aquifer leakage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ priestley_use_2018 Serial 115  
Permanent link to this record
 

 
Author Smedley, P.L.; Kinniburgh, D.G. url  openurl
  Title Uranium in natural waters and the environment: Distribution, speciation and impact Type Journal Article
  Year 2023 Publication Applied Geochemistry Abbreviated Journal  
  Volume 148 Issue Pages 105534  
  Keywords Drinking water, Mine water, NORM, Radionuclide, Redox, U isotopes, Uranium, Uranyl  
  Abstract The concentrations of U in natural waters are usually low, being typically less than 4 μg/L in river water, around 3.3 μg/L in open seawater, and usually less than 5 μg/L in groundwater. Higher concentrations can occur in both surface water and groundwater and the range spans some six orders of magnitude, with extremes in the mg/L range. However, such extremes in surface water are rare and linked to localized mineralization or evaporation in alkaline lakes. High concentrations in groundwater, substantially above the WHO provisional guideline value for U in drinking water of 30 μg/L, are associated most strongly with (i) granitic and felsic volcanic aquifers, (ii) continental sandstone aquifers especially in alluvial plains and (iii) areas of U mineralization. High-U groundwater provinces are more common in arid and semi-arid terrains where evaporation is an additional factor involved in concentrating U and other solutes. Examples of granitic and felsic volcanic terrains with documented high U concentrations include several parts of peninsular India, eastern USA, Canada, South Korea, southern Finland, Norway, Switzerland and Burundi. Examples of continental sandstone aquifers include the alluvial plains of the Indo-Gangetic Basin of India and Pakistan, the Central Valley, High Plains, Carson Desert, Española Basin and Edwards-Trinity aquifers of the USA, Datong Basin, China, parts of Iraq and the loess of the Chaco-Pampean Plain, Argentina. Many of these plains host eroded deposits of granitic and felsic volcanic precursors which likely act as primary sources of U. Numerous examples exist of groundwater impacted by U mineralization, often accompanied by mining, including locations in USA, Australia, Brazil, Canada, Portugal, China, Egypt and Germany. These may host high to extreme concentrations of U but are typically of localized extent. The overarching mechanisms of U mobilization in water are now well-established and depend broadly on redox conditions, pH and solute chemistry, which are shaped by the geological conditions outlined above. Uranium is recognized to be mobile in its oxic, U(VI) state, at neutral to alkaline pH (7–9) and is aided by the formation of stable U–CO3(±Ca, Mg) complexes. In such oxic and alkaline conditions, U commonly covaries with other similarly controlled anions and oxyanions such as F, As, V and Mo. Uranium is also mobile at acidic pH (2–4), principally as the uranyl cation UO22+. Mobility in U mineralized areas may therefore occur in neutral to alkaline conditions or in conditions with acid drainage, depending on the local occurrence and capacity for pH buffering by carbonate minerals. In groundwater, mobilization has also been observed in mildly (Mn-) reducing conditions. Uranium is immobile in more strongly (Fe-, SO4-) reducing conditions as it is reduced to U(IV) and is either precipitated as a crystalline or ‘non-crystalline’ form of UO2 or is sorbed to mineral surfaces. A more detailed understanding of U chemistry in the natural environment is challenging because of the large number of complexes formed, the strong binding to oxides and humic substances and their interactions, including ternary oxide-humic-U interactions. Improved quantification of these interactions will require updating of the commonly-used speciation software and databases to include the most recent developments in surface complexation models. Also, given their important role in maintaining low U concentrations in many natural waters, the nature and solubility of the amorphous or non-crystalline forms of UO2 that result from microbial reduction of U(VI) need improved quantification. Even where high-U groundwater exists, percentage exceedances of the WHO guideline value are variable and often small. More rigorous testing programmes to establish usable sources are therefore warranted in such vulnerable aquifers. As drinking-water regulation for U is a relatively recent introduction in many countries (e.g. the European Union), testing is not yet routine or established and data are still relatively limited. Acquisition of more data will establish whether analogous aquifers elsewhere in the world have similar patterns of aqueous U distribution. In the high-U groundwater regions that have been recognized so far, the general absence of evidence for clinical health symptoms is a positive finding and tempers the scale of public health concern, though it also highlights a need for continued investigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ smedley_uranium_2023 Serial 118  
Permanent link to this record
 

 
Author Khoury, H.N.; salameh, E.M.; Clark, I.D. url  openurl
  Title Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan Type Journal Article
  Year 2014 Publication Applied Geochemistry Abbreviated Journal  
  Volume 43 Issue Pages 49-65  
  Keywords  
  Abstract Secondary uranium encrustations are hosted in thick travertine and calcrete deposits of Pleistocene–Recent age in central Jordan. The central Jordan varicolored marble and travertine are equivalent to the active metamorphic area in Maqarin, north Jordan. More than 100 samples were collected from the outcrops of the varicolored marble, travertine, calcrete, and the yellow uranium encrustations. The secondary yellow encrustations are mainly composed of uranyl vanadate complexes. Tyuyamunite Ca(UO2)2V25+O8·3(H2O)–strelkinite Na2(UO2)2V2O8·6(H2O) solid solution series are the major components and their composition reflects changes in the Ca/Na ratio in solution. Potentially, new vanadium free calcium uranate phases (restricted to the varicolored marble) were identified with CaO:UO3 ratios different from the known mineral vorlanite (CaU6+)O4. Carbon and oxygen isotope data from calcite in the varicolored marble are characterized by Rayleigh-type enrichment in light isotopes associated with release of 13C and 18O enriched CO2 by high temperature decarbonation during combustion of the bituminous marl. Stable isotope results from uranium hosted travertine and calcrete varieties exhibit a wide range in isotopic values, between decarbonated and normal sedimentary carbonate rocks. The depleted δ13C and δ18O values in the travertine are related to the kinetic reaction of atmospheric CO2 with hyperalkaline Ca(OH)2 water. The gradual enrichment of δ13C and δ18O values in the calcrete towards equilibrium with the surrounding environment is related to continuous evaporation during seasonal dry periods. Uranium mineralization in central Jordan resulted from the interplay of tectonic, climatic, hydrologic, and depositional events. The large distribution of surficial uranium occurrences hosted in travertine and calcrete deposits is related to the artesian ascending groundwater that formed extensive lakes along NNW–SSE trending depressions. Fresh groundwater moved upward through the highly fractured phosphate, bituminous marl and varicolored marble to form unusual highly alkaline water (hydroxide–sulfate type) enriched with sensitive redox elements among which were U and V.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ khoury_mineralogy_2014 Serial 121  
Permanent link to this record
 

 
Author Mühr-Ebert, E.L.; Wagner, F.; Walther, C. url  openurl
  Title Speciation of uranium: Compilation of a thermodynamic database and its experimental evaluation using different analytical techniques Type Journal Article
  Year 2019 Publication Applied Geochemistry Abbreviated Journal  
  Volume 100 Issue Pages 213-222  
  Keywords  
  Abstract Environmental hazards are caused by uranium mining legacies and enhanced radioactivity in utilized groundwater and surface water resources. Knowledge of uranium speciation in these waters is essential for predicting radionuclide migration and for installing effective water purification technology. The validity of the thermodynamic data for the environmental media affected by uranium mining legacies is of utmost importance. Therefore, a comprehensive and consistent database was established according to current knowledge. The uranium data included in the database is based on the NEA TDB (Guillaumont et al., 2003) and is modified or supplemented as necessary e.g. for calcium and magnesium uranyl carbonates. The specific ion interaction theory (Brönsted, 1922) is used to estimate activity constants, which is sufficient for the considered low ionic strengths. The success of this approach was evaluated by comparative experimental investigations and model calculations (PHREEQC (Parkhurst and Appelo, 1999)) for several model systems. The waters differ in pH (2.7–9.8), uranium concentration (10−9-10−4 mol/L) and ionic strength (0.002–0.2 mol/L). We used chemical extraction experiments, ESI-Orbitrap-MS and time-resolved laser-induced fluorescence spectroscopy (TRLFS) to measure the uranium speciation. The latter method is nonintrusive and therefore does not change the chemical composition of the investigated waters. This is very important, because any change of the system under study may also change the speciation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ muhr-ebert_speciation_2019 Serial 142  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: