|   | 
Details
   web
Records
Author Hofmann, H.; Pearce, J.K.; Hayes, P.; Golding, S.D.; Hall, N.; Baublys, K.A.; Raiber, M.; Suckow, A.
Title Multi-tracer approach to constrain groundwater flow and geochemical baseline assessments for CO2 sequestration in deep sedimentary basins Type Journal Article
Year 2023 Publication International Journal of Coal Geology Abbreviated Journal
Volume Issue Pages 104438
Keywords CO geological storage, Great Artesian Basin, Groundwater chemistry, Isotopic tracer, Surat Basin
Abstract Geological storage of gases will be necessary in the push to net zero and the energy transition to reduce carbon emissions to atmosphere. These include CO2 geological storage in suitable sandstone reservoirs. Understanding groundwater flow, connectivity and hydrogeochemical processes in aquifer and storage systems is vital to prevent risk and protect important water resources, such as the Great Artesian Basin. Here, we provide a ‘tool-box’ of geochemical assessment methods to provide information on flow patterns through the basin’s aquifers (changes in chemistry along flow path), stagnant versus flowing conditions (cosmogenic isotopes and noble gases), inter-aquifer connectivity and seal properties (major ions, Sr and stable isotopes), water quality (major ions and metals) and general assessments on residence times of groundwater (cosmogenic isotopes and noble gases). This information can be used with reservoir and groundwater models to inform on possible changes in the above-mentioned processes and serve as input parameters for CO2 injection impact modelling. We demonstrate the use and interpretation on an example of a potential CO2 storage geological sequestration site in the Surat Basin, part of the Great Artesian Basin, and the aquifers that overly the reservoir. The stable water isotopes are depleted compared to average rainfall and most likely indicate greater contributions from monsoonal rain events from the northern monsoonal troughs, where amount and rainout effects lead to the depletion rather than colder recharge climates. This is supported by the modern recharge temperatures from noble gases. Inter-aquifer mixing between the Precipice Sandstone reservoir and the Hutton Sandstone aquifer seems unlikely as the Sr isotope ratios are distinctly different suggesting that the Evergreen Formation is a seal in the locations sampled. Mixing, however, occurs on the edges of the basin, especially in the south-east and east where the Surat Basin transitions into the Clarence-Moreton Basin. Groundwater flow appears to be to the south in the Precipice Sandstone, with a component of flow east to the Clarence-Morton Basin. The cosmogenic isotopes and noble gases strongly indicate very long residence times of groundwater in the central south Precipice Sandstone around a proposed storage site. 14C values below analytical uncertainty, R36Cl ratios at secular equilibrium as well as high He concentrations and high 40Ar/36Ar ratios support the argument that groundwater flow in this area is extremely slow or groundwater is stagnant. The results of this study reflect the geological and hydrogeological complexities of sedimentary basins and that baseline studies, such as this one, are paramount for management strategies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0166-5162 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hofmann_multi-tracer_2023 Serial 165
Permanent link to this record
 

 
Author Stone, A.E.C.; Edmunds, W.M.
Title Naturally-high nitrate in unsaturated zone sand dunes above the Stampriet Basin, Namibia Type Journal Article
Year 2014 Publication Journal of Arid Environments Abbreviated Journal
Volume 105 Issue Pages 41-51
Keywords Kalahari, Namibia, Nitrate in the unsaturated zone, Stampriet Basin, Transboundary basin, Unsaturated zone recharge
Abstract Elevated groundwater nitrate levels are common in drylands, often in excess of WHO guidelines, with concern for human and animal health. In light of recent attempts to identify nitrate sources in the Kalahari this paper presents the first unsaturated zone (USZ) nitrate profiles and recharge rate estimates for the important transboundary Stampriet Basin, alongside the first rainfall chemistry records. Elevated subsurface nitrate reaches 100–250 and 250–525 mg/L NO3–N, with NO3–N/Cl of 4–12, indicating input above evapotranspiration. Chloride mass balance recharge rates range from 4 to 27 mm/y, indicating a vertical movement of these nitrate pulses toward the water table over multi-decadal timescales. These profiles are sampled from dune crests, away from high concentrations of animals and without termite mounds. Given low-density animal grazing is unlikely to contribute consistent spot-scale nitrate over decades, these profiles give an initial estimate of naturally-produced concentrations. This insight is important for the management of the Stampriet Basin and wider Kalahari groundwater. This study expands our knowledge about elevated nitrate in dryland USZs, demonstrating that it can occur as pulses, probably in response to transient vegetation cover and that it is not limited to long-residence time USZs with very limited downward moisture flux (recharge).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0140-1963 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ stone_naturally-high_2014 Serial 91
Permanent link to this record
 

 
Author Stone, A.E.C.; Thomas, D.S.G.
Title Casting new light on late Quaternary environmental and palaeohydrological change in the Namib Desert: A review of the application of optically stimulated luminescence in the region Type Journal Article
Year 2013 Publication Journal of Arid Environments Abbreviated Journal
Volume 93 Issue Pages 40-58
Keywords Namib Desert, Optically stimulated luminescence dating, Palaeoenvironment, Palaeohydrology, Quaternary, Southern Africa
Abstract The application of optically stimulated luminescence (OSL) dating in the Namib Desert is casting new light on late Quaternary environments. OSL has been applied to: (i) complex linear dunes, alongside ground penetrating radar stratigraphy in order to establish dune migration rates, (ii) fluvial lithofacies associations that distinguish between flood deposits and river end points, in order to constrain the timing of periods of higher discharge and conditions relatively drier than present and (iii) aeolian sand interbedded with carbonate deposits in order to provide chronologies for water-lain interdune sediments. We present and review the contribution of these data to enhancing reconstructions of the palaeoenvironments and palaeohydrology of the west coast of Namibia, particularly the increased confidence in interpretations provided by lithofacies analysis of the river deposits. This includes major silt deposits, which have had a contested palaeohydrological interpretation, such as the Kuiseb River Homeb Silts. We conclude that OSL should remain a key chronological technique to further elucidate the palaeoenvironmental history of southern Africa.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0140-1963 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ stone_casting_2013 Serial 98
Permanent link to this record
 

 
Author Stone, A.E.C.; Edmunds, W.M.
Title Naturally-high nitrate in unsaturated zone sand dunes above the Stampriet Basin, Namibia Type Journal Article
Year 2014 Publication Journal of Arid Environments Abbreviated Journal
Volume 105 Issue Pages 41-51
Keywords Kalahari, Namibia, Nitrate in the unsaturated zone, Stampriet Basin, Transboundary basin, Unsaturated zone recharge
Abstract Elevated groundwater nitrate levels are common in drylands, often in excess of WHO guidelines, with concern for human and animal health. In light of recent attempts to identify nitrate sources in the Kalahari this paper presents the first unsaturated zone (USZ) nitrate profiles and recharge rate estimates for the important transboundary Stampriet Basin, alongside the first rainfall chemistry records. Elevated subsurface nitrate reaches 100–250 and 250–525 mg/L NO3–N, with NO3–N/Cl of 4–12, indicating input above evapotranspiration. Chloride mass balance recharge rates range from 4 to 27 mm/y, indicating a vertical movement of these nitrate pulses toward the water table over multi-decadal timescales. These profiles are sampled from dune crests, away from high concentrations of animals and without termite mounds. Given low-density animal grazing is unlikely to contribute consistent spot-scale nitrate over decades, these profiles give an initial estimate of naturally-produced concentrations. This insight is important for the management of the Stampriet Basin and wider Kalahari groundwater. This study expands our knowledge about elevated nitrate in dryland USZs, demonstrating that it can occur as pulses, probably in response to transient vegetation cover and that it is not limited to long-residence time USZs with very limited downward moisture flux (recharge).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0140-1963 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Stone201441 Serial 218
Permanent link to this record
 

 
Author Shams, A.
Title A rediscovered-new ‘Qanat’ system in the High Mountains of Sinai Peninsula, with Levantine reflections Type Journal Article
Year 2014 Publication Journal of Arid Environments Abbreviated Journal
Volume 110 Issue Pages 69-74
Keywords Foggara, Irrigation, Levant, Qanat, Sinai Peninsula
Abstract Since the Achaemenid Empire in 532–332 BCE, the ‘Qanat’ became the central irrigation system in the arid and semi-arid lands. Several terms are used for ‘Qanat’ in different regions, including the Karez, Qanat, Falaj type Daudi, Qanat Romani, Fuqara (Foggara), or Khettara as known in Central Asia, Persia, Southeast Arabia, Levant, North Africa, or Morocco respectively. Typically, the ground, spring or surface water (i.e. seasonal floods or river-fed) sources feed similar irrigation system. Based on thirteen years of extensive survey and analysis work (i.e. Sinai Peninsula Research 2000–2013 CE), this paper presents a rediscovered-new Qanat system in the High Mountains of Sinai Peninsula (i.e. UNESCO World Heritage Site ‘WHS’ no. 954) under chronological open question with Levantine reflections. In 1970s CE, the present Sinaitic site of Farsh Abu A’lwan or the anciently known Farsh Shamma’a was archaeologically surveyed without a direct reference to the Qanat system in-situ. Scientifically, it is an argumentative and unique Qanat system in terms of chronology, location (region), site (local-setting), water source, size and household utility. It is the only discovered ‘Qanat’ across the Sinai, connecting the Near East and North Africa.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0140-1963 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Shams201469 Serial 248
Permanent link to this record