|   | 
Details
   web
Records
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C.
Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
Year 2022 Publication Water Abbreviated Journal
Volume 14 Issue (down) 5 Pages
Keywords
Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Marinos2022 Serial 82
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C.
Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
Year 2022 Publication Water Abbreviated Journal
Volume 14 Issue (down) 5 Pages
Keywords
Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ w14050734 Serial 81
Permanent link to this record
 

 
Author Eliades, M.; Bruggeman, A.; Djuma, H.; Christofi, C.; Kuells, C.
Title Quantifying Evapotranspiration and Drainage Losses in a Semi-Arid Nectarine (Prunus persica var. nucipersica) Field with a Dynamic Crop Coefficient (Kc) Derived from Leaf Area Index Measurements Type Journal Article
Year 2022 Publication Water Abbreviated Journal
Volume 14 Issue (down) 5 Pages
Keywords
Abstract Quantifying evapotranspiration and drainage losses is essential for improving irrigation efficiency. The FAO-56 is the most popular method for computing crop evapotranspiration. There is, however, a need for locally derived crop coefficients (Kc) with a high temporal resolution to reduce errors in the water balance. The aim of this paper is to introduce a dynamic Kc approach, based on Leaf Area Index (LAI) observations, for improving water balance computations. Soil moisture and meteorological data were collected in a terraced nectarine (Prunus persica var. nucipersica) orchard in Cyprus, from 22 March 2019 to 18 November 2021. The Kc was derived as a function of the canopy cover fraction (c), from biweekly in situ LAI measurements. The use of a dynamic Kc resulted in Kc estimates with a bias of 17 mm and a mean absolute error of 0.8 mm. Evapotranspiration (ET) ranged from 41% of the rainfall (P) and irrigation (I) in the wet year (2019) to 57% of P + I in the dry year (2021). Drainage losses from irrigation (DR_I) were 44% of the total irrigation. The irrigation efficiency in the nectarine field could be improved by reducing irrigation amounts and increasing the irrigation frequency. Future studies should focus on improving the dynamic Kc approach by linking LAI field observations with remote sensing observations and by adding ground cover observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ w14050734 Serial 85
Permanent link to this record
 

 
Author Benito, G.; Rohde, R.; Seely, M.; Külls, C.; Dahan, O.; Enzel, Y.; Todd, S.; Botero, B.; Morin, E.; Grodek, T.
Title Management of alluvial aquifers in two southern African ephemeral rivers: implications for IWRM Type Journal Article
Year 2010 Publication Water Resources Management Abbreviated Journal
Volume 24 Issue (down) 4 Pages 641-667
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Benito2010management Serial 25
Permanent link to this record
 

 
Author Dahan, O.; Tatarsky, B.; Enzel, Y.; Külls, C.; Seely, M.; Benito, G.
Title Dynamics of flood water infiltration and ground water recharge in hyperarid desert Type Journal Article
Year 2008 Publication Groundwater Abbreviated Journal
Volume 46 Issue (down) 3 Pages 450-461
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Blackwell Publishing Inc Malden, USA Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Dahan2008dynamics Serial 27
Permanent link to this record
 

 
Author Hdeib, R.; Aouad, M.
Title Rainwater harvesting systems: An urban flood risk mitigation measure in arid areas Type Journal Article
Year 2023 Publication Water Science and Engineering Abbreviated Journal
Volume 16 Issue (down) 3 Pages 219-225
Keywords Rainwater harvesting, Urban floods, Flood map, Hydrodynamic model, Built environment, Arid areas
Abstract Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a two-dimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-2370 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Hdeib2023219 Serial 242
Permanent link to this record
 

 
Author Klock, H.; Külls, C.; Udluft, P.
Title Estimating recharge values using hydrochemical and geological data: a case study from the Type Conference Article
Year 2001 Publication Impact of Human Activity on Groundwater Dynamics: Proceedings of an International Symposium (Symposium S3) Held During the Sixth Scientific Assembly of the International Association of Hydrological Sciences (IAHS) at Maastricht, The Netherlands, from 18 t Abbreviated Journal
Volume Issue (down) 269 Pages 25
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Assn of Hydrological Sciences
Notes Approved no
Call Number THL @ christoph.kuells @ Klock2001estimating Serial 60
Permanent link to this record
 

 
Author Demuth, S.; Külls, C.
Title Probability analysis and regional aspects of droughts in southern Germany Type Journal Article
Year 1997 Publication Sustainability of Water Resources under Increasing Uncertainty Abbreviated Journal
Volume Issue (down) 240 Pages 97
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Iahs Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Demuth1997probability Serial 35
Permanent link to this record
 

 
Author Akter, A.; Tanim, A.H.; Islam, M.K.
Title Possibilities of urban flood reduction through distributed-scale rainwater harvesting Type Journal Article
Year 2020 Publication Water Science and Engineering Abbreviated Journal
Volume 13 Issue (down) 2 Pages 95-105
Keywords Low-impact development (LID), SWMM, HEC-RAS, Remote sensing, Urban flooding, Inundation depth
Abstract Urban flooding in Chittagong City usually occurs during the monsoon season and a rainwater harvesting (RWH) system can be used as a remedial measure. This study examines the feasibility of rain barrel RWH system at a distributed scale within an urbanized area located in the northwestern part of Chittagong City that experiences flash flooding on a regular basis. For flood modeling, the storm water management model (SWMM) was employed with rain barrel low-impact development (LID) as a flood reduction measure. The Hydrologic Engineering Center’s River Analysis System (HEC-RAS) inundation model was coupled with SWMM to observe the detailed and spatial extent of flood reduction. Compared to SWMM simulated floods, the simulated inundation depth using remote sensing data and the HEC-RAS showed a reasonable match, i.e., the correlation coefficients were found to be 0.70 and 0.98, respectively. Finally, using LID, i.e., RWH, a reduction of 28.66% could be achieved for reducing flood extent. Moreover, the study showed that 10%–60% imperviousness of the subcatchment area can yield a monthly RWH potential of 0.04–0.45 m3 from a square meter of rooftop area. The model can be used for necessary decision making for flood reduction and to establish a distributed RWH system in the study area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-2370 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Akter202095 Serial 247
Permanent link to this record
 

 
Author Androvitsanea, A.; Fawzy, M.; Fuchs, J.; Külls, C.; Fahlbusch, H.; Heiden, J.
Title Hydrologische Bedingungen im Heraion von Samos vom 12. bis 8. Jh. v. Chr. und ihre Bedeutung für die wasserbauliche Infrastruktur Type Journal Article
Year 2018 Publication Environmental Water Engineering Abbreviated Journal
Volume 1 Issue (down) 1 Pages 1-21
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Androvitsanea2018hydrologische Serial 17
Permanent link to this record