|   | 
Details
   web
Records
Author Jing, M.; Kumar, R.; Attinger, S.; Li, Q.; Lu, C.; Heße, F.
Title Assessing the contribution of groundwater to catchment travel time distributions through integrating conceptual flux tracking with explicit Lagrangian particle tracking Type Journal Article
Year 2021 Publication Advances in Water Resources Abbreviated Journal
Volume 149 Issue (up) Pages 103849
Keywords Travel time distribution, Flux tracking, Particle tracking, Coupled model, Predictive uncertainty
Abstract Travel time distributions (TTDs) provide an effective way to describe the transport and mixing processes of water parcels in a subsurface hydrological system. A major challenge in characterizing catchment TTD is quantifying the travel times in deep groundwater and its contribution to the streamflow TTD. Here, we develop and test a novel modeling framework for an integrated assessment of catchment scale TTDs through explicit representation of 3D-groundwater dynamics. The proposed framework is based on the linkage between a flux tracking scheme with the surface hydrologic model (mHM) for the soil-water compartment and a particle tracking scheme with the 3D-groundwater model OpenGeoSys (OGS) for the groundwater compartment. This linkage provides us with the ability to simulate the spatial and temporal dynamics of TTDs in these different hydrological compartments from grid scale to regional scale. We apply this framework in the Nägelstedt catchment in central Germany. Simulation results reveal that both shape and scale of grid-scale groundwater TTDs are spatially heterogeneous, which are strongly dependent on the topography and aquifer structure. The component-wise analysis of catchment TTD shows a time-dependent sensitivity of transport processes in soil zone and groundwater to driving meteorological forcing. Catchment TTD exhibits a power-law shape and fractal behavior. The predictive uncertainty in catchment mean travel time is dominated by the uncertainty in the deep groundwater rather than that in the soil zone. Catchment mean travel time is severely biased by a marginal error in groundwater characterization. Accordingly, we recommend to use multiple summary statistics to minimize the predictive uncertainty introduced by the tailing behavior of catchment TTD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0309-1708 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Jing2021103849 Serial 220
Permanent link to this record
 

 
Author Kharazi, P.; khazaeli, E.A.; Heshmatpour, A.
Title Delineation of suitable sites for groundwater dams in the semi-arid environment in the northeast of Iran using GIS-based decision-making method Type Journal Article
Year 2021 Publication Groundwater for Sustainable Development Abbreviated Journal
Volume 15 Issue (up) Pages 100657
Keywords Subsurface dam, Hybrid decision-making method, Geographic information system, Analytical hierarchy process, EDAS, TOPSIS1
Abstract Competing commercial demands on water resources need to be balanced as the world’s population rises. Generally, groundwater is raised by subsurface dams. In this paper, the geographic information system (GIS) software and a decision-making method were applied. As the first step, the limitations that affect the establishment of the subsurface dam were identified using eliminating criteria by the Boolean logic. Regarding the second step, the most appropriate axis was determined for subsurface dam construction in each of the limits. The analytical hierarchy process (AHP) was applied according to the evaluation criteria in this study. The aim of using AHP was to weigh and prioritize the criteria of the groundwater dam for recognizing appropriate sites. Among various places and regarding the subsurface dam construction, AHP was conducted using a hierarchy process for finding the most suitable sites in the third stage of the decision-making method. Finally, among the ten appropriate sites, cross comparison was drawn by using Decision Expert (DEX), Evaluation based on Distance from Average Solution (EDAS), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Compared together (as a process of decision-making), DEX, TOPSIS, and EDAS methods assisted in ranking the most appropriate sites in the final step of subsurface dam pre-selection. A and C axes obtained scores between 1 and 2, among 10 axes according to the numerically ranked locations. Regarding the water shortage issue and better management of the underground water at certain levels, the findings of this study could be useful for the residents of Kajbid-Balaqly Watershed in the dry season. Further, water managers can use the above-mentioned methods for their decisions regarding the proper subsurface dam establishment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Kharazi2021100657 Serial 250
Permanent link to this record
 

 
Author Zeng, S.; Shen, Y.; Sun, B.; Zhang, N.; Zhang, S.; Feng, S.
Title Pore structure evolution characteristics of sandstone uranium ore during acid leaching Type Journal Article
Year 2021 Publication Nuclear Engineering and Technology Abbreviated Journal
Volume 53 Issue (up) 12 Pages 4033-4041
Keywords Acid method, In situ leaching, Nuclear magnetic resonance, Pore characteristic, Sandstone uranium ore
Abstract To better understand the permeability of uranium sandstone, improve the leaching rate of uranium, and explore the change law of pore structure characteristics and blocking mechanism during leaching, we systematically analyzed the microstructure of acid-leaching uranium sandstone. We investigated the variable rules of pore structure characteristics based on nuclear magnetic resonance (NMR). The results showed the following: (1) The uranium concentration change followed the exponential law during uranium deposits acid leaching. After 24 h, the uranium leaching rate reached 50%. The uranium leaching slowed gradually over the next 4 days. (2) Combined with the regularity of porosity variation, Stages I and II included chemical plugging controlled by surface reaction. Stage I was the major completion phase of uranium displacement with saturation precipitation of calcium sulfate. Stage II mainly precipitated iron (III) oxide-hydroxide and aluminum hydroxide. Stage III involved physical clogging controlled by diffusion. (3) In the three stages of leaching, the permeability of the leaching solution changed with the pore structure, which first decreased, then increased, and then decreased.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1738-5733 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ zeng_pore_2021 Serial 199
Permanent link to this record
 

 
Author de Jong, I.J.H.; Arif, S.S.; Gollapalli, P.K.R.; Neelam, P.; Nofal, E.R.; Reddy, K.Y.; Röttcher, K.; Zohrabi, N.
Title Improving agricultural water productivity with a focus on rural transformation* Type Journal Article
Year 2021 Publication Irrigation and Drainage Abbreviated Journal
Volume 70 Issue (up) 3 Pages 458-469
Keywords irrigation efficiency, water productivity, rural transformation, efficacité de l’irrigation, productivité de l’eau, transformation rurale
Abstract ABSTRACT As a result of population growth, economic development and climate change, feeding the world and providing water security will require important changes in the technologies, institutions, policies and incentives that drive present-day water management, as captured in Goal 6.4 of the Millennium Development Goals. Irrigation is the largest and most inefficient water user, and there is an expectation that even small improvements in agricultural water productivity will improve water security. This paper argues that improvements in irrigation water productivity involves a complex and comprehensive rural transformation that goes beyond mere promotion of water saving technologies. Many of the measures to improve water productivity require significant changes in the production systems of farmers and in the support provided to them. Looking forward, water use and competition over water are expected to further increase. By 2025, about 1.8 billion people will be living in regions or countries with absolute water scarcity. Demand for water will rise exponentially, while supply becomes more erratic and uncertain, prompting the need for significant shifts of inter-sectoral water allocation to support continued economic growth. Advances in the use of remote sensing technologies will make it increasingly possible to cost-effectively and accurately estimate crop evapotranspiration from farmers’ fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ https://doi.org/10.1002/ird.2451 Serial 89
Permanent link to this record