|   | 
Details
   web
Records
Author Su, X.; Liu, Z.; Yao, Y.; Du, Z.
Title Petrology, mineralogy, and ore leaching of sandstone-hosted uranium deposits in the Ordos Basin, North China Type Journal Article
Year 2020 Publication Ore Geology Reviews Abbreviated Journal
Volume 127 Issue Pages 103768
Keywords (down) Geochemical composition, leach mining, Mineralogy, Ordos Basin, Sandstone-hosted uranium deposit
Abstract The Nalinggou–Daying uranium metallogenic belt is situated at the northern Ordos Basin, China. Petrographical, mineralogical and geochemical techniques were used to study the ore-bearing sandstones and host rocks in the Nalinggou–Daying uranium metallogenic belt. The present study shows that uranium minerals, i.e., coffinite, pitchblende, and brannerite, are mostly disseminated around pyrite and detrital particles. The ore-bearing sandstones are enriched in organic matter, with which this reductive environment influenced uranium leaching. The carbonate concentration of the uranium ores is markedly higher than that of the host rocks, and intense carbonatization occurs in the ore-bearing sandstones. In this case, the usage of the classical in-situ leach uranium mining technique by injecting H2SO4 + H2O2 solution produces calcium sulfate precipitate, which can lead to blocking of the ore-bearing strata. For this reason, laboratory and field uranium mining tests were conducted using CO2 + O2 in-situ leaching technology and were demonstrated to be successful, illustrating that this approach is technically feasible. Inhibiting ore bed blockage and increasing the amount of injected O2 are important for uranium leaching in this setting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ su_petrology_2020 Serial 120
Permanent link to this record
 

 
Author Hall, S.M.; Gosen, B.S.V.; Zielinski, R.A.
Title Sandstone-hosted uranium deposits of the Colorado Plateau, USA Type Journal Article
Year 2023 Publication Ore Geology Reviews Abbreviated Journal
Volume 155 Issue Pages 105353
Keywords (down) Colorado, Plateau, Uranium, Vanadium
Abstract More than 4,000 sandstone-hosted uranium occurrences host over 1.2 billion pounds of mined and in situ U3O8 throughout the Colorado Plateau. Most of the resources are in two distinct mineral systems with deposits hosted in the Triassic Chinle and Jurassic Morrison Formations. In the Chinle mineral system, base metal sulfides typically accompany mineralization. The Morrison mineral system is characterized by V/U ratios up to 20. The uranium source was likely volcanic ash preserved as bentonitic mudstones in the Brushy Basin Member of the Morrison Formation, and lithic volcanic clasts, ash shards, and bentonitic clay in the lower part of the Chinle Formation. Vanadium originated from two possible sources: iron–titanium oxides that are extensively altered in bleached rock near deposits or from similar minerals in variably bleached red beds interbedded with and beneath the Morrison. In Chinle-hosted deposits, in addition to volcanic ash, a contributing source of both vanadium and uranium is proposed here for the first time to be underlying red beds in the Moenkopi and Cutler Formations that have undergone a cycle of reddening-bleaching-reoxidation. Transport in both systems was likely in groundwater through the more permeable sandstones and conglomerate units. The association of uranium minerals with carbonate and more rarely apatite, suggests that transport of uranium was as a carbonate or phosphate complex. The first comprehensive examination of paleoclimate, paleotopography, and subsurface structure of aquifers coupled with analysis of the geochronology of deposits suggests that that there were distinct pulses of uranium mineralization/redistribution during the period from about 259 Ma to 12 Ma when oxidized mineralizing fluids were intermittently rejuvenated in the Plateau in response to changes in tectonic regime and climate. Multiple lines of evidence indicate that deposits formed at ambient temperatures of about 25 °C to no greater than about 140 °C. In both systems, deposits formed where groundwater flow slowed and was subject to evaporative concentration. Stagnant conditions allowed for prolonged interaction of U- and V-enriched groundwater with ferrous iron-bearing reductants, such as illite and iron–titanium oxides, and more rarely organic material such as plant debris. Paragenetically late in the sequence, reducing fluids introduced additional organic matter to some deposits. Reducing fluids and introduced organic matter (now amorphous and altered by radiolysis) may originate from regional petroleum systems where peak oil and gas generation was from ∼ 82 to ∼ 5 Ma. Our novel analysis indicates that these reducing fluids bleached rock and protected affected deposits from remobilization during exposure and weathering that followed uplift of the Plateau (∼80 to 40 Ma).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hall_sandstone-hosted_2023 Serial 111
Permanent link to this record
 

 
Author Min, M.; Chen, J.; Wang, J.; Wei, G.; Fayek, M.
Title Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China Type Journal Article
Year 2005 Publication Ore Geology Reviews Abbreviated Journal
Volume 26 Issue 1 Pages 51-69
Keywords (down) China, Mineralogy, Paragenesis, Sandstone-hosted roll-type uranium deposit
Abstract We present a first paragenetic study of the Wuyier, Wuyisan, Wuyiyi and Shihongtan sandstone-hosted roll-front uranium deposits, northwest China. The mineralization is hosted by Lower–Middle Jurassic coarse- to medium-grained sandstones, which are dark-gray to black due to a mixture of ore minerals and carbonaceous debris. The sandstone is alluvial fan-braided river facies. Minerals associated with these deposits can be broadly categorized as detrital, authigenic, and ore-stage mineralization. Ore minerals consist of uraninite and coffinite. This is the first noted occurrence of coffinite in this type of deposit in China. Sulfide minerals associated with the uranium minerals are pyrite, marcasite, and less commonly, sphalerite and galena. The sulfide minerals are largely in textural equilibrium with the uranium minerals. However, these sulfide minerals occasionally appear to predate, as well as postdate, the uranium minerals. This implies that there are multiple generations of sulfides associated with these deposits. The ore minerals occur interstitially between fossilized wood cells in the sandstones as well as replace fossilized wood and biotite. The deposits are generally low-grade. Primary uranium minerals associated with the low-grade deposits are generally too small, ranging from 0.2 to 0.3 μm in diameter, to be observed by optical microscopy and are only observed by electron microscopy. Mineral paragenesis and textures indicate that these deposits formed under low temperature (30–50 °C) conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ min_mineral_2005 Serial 175
Permanent link to this record
 

 
Author Hall, S.M.; Gosen, B.S.V.; Paces, J.B.; Zielinski, R.A.; Breit, G.N.
Title Calcrete uranium deposits in the Southern High Plains, USA Type Journal Article
Year 2019 Publication Ore Geology Reviews Abbreviated Journal
Volume 109 Issue Pages 50-78
Keywords (down) Calcrete, Carnotite, Finchite, Geochemistry, Uranium, Vanadium
Abstract The Southern High Plains (SHP) is a new and emerging U.S. uranium province. Here, uranyl vanadates form deposits in Pliocene to Pleistocene sandstone, dolomite, and limestone. Fifteen calcrete uranium occurrences are identified; two of these, the Buzzard Draw and Sulfur Springs Draw deposits, have combined in-place resources estimated at about 4 million pounds of U3O8. Ore minerals carnotite and finchite are hosted in dolomite at the Sulfur Springs Draw deposit, with accessory fluorite, celestine, smectite/illite, autunite, and strontium carbonate. Host carbonate at the Sulfur Springs Draw deposit is ∼190 ka and mineralization mobilized as recently as 3.8 ka. Ash collected near the deposit is 631 ka and erupted from the Yellowstone caldera complex. The Triassic Dockum Group that contains sandstone-hosted uranium deposits throughout the region and underlies the SHP is a potential source for uranium and vanadium. Regional uplift and dissection reintroduced oxygenated groundwater into the Dockum Group, mobilizing uranium. Additional uranium may have been contributed to groundwater by weathering of volcanic ash in Pliocene and Pleistocene host rocks. The locations of the uranium occurrences are mostly in modern drainage systems in the southeast portion of the SHP. Modelling of modern groundwater in the SHP carried out in a parallel study shows that a single fluid could form carnotite through evaporation, and that fluids of the requisite composition are more prevalent in the southern portion of the SHP. The southeastern portion of the SHP hosts more uranium occurrences due to a variety of factors including (1) upward transport of groundwater and connectivity between source and host rock, (2) higher uranium and vanadium content of groundwater, (3) higher rates of groundwater recharge in this region to drive the mineralizing system, and (4) shallower groundwater facilitating surface evaporation. Ongoing erosion of host rocks challenges preservation of deposits and may limit their size.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ hall_calcrete_2019 Serial 124
Permanent link to this record
 

 
Author Rallakis, D.; Michels, R.; Cathelineau, M.; Parize, O.; Brouand, M.
Title Conditions for uranium biomineralization during the formation of the Zoovch Ovoo roll-front-type uranium deposit in East Gobi Basin, Mongolia Type Journal Article
Year 2021 Publication Ore Geology Reviews Abbreviated Journal
Volume 138 Issue Pages 104351
Keywords (down) Bioreduction, East Gobi Basin, Mongolia, Organic matter, Roll-front, Sulfur isotopes, Uranium
Abstract The Zoovch Ovoo uranium roll-front-type deposit is hosted in the Sainshand Formation, a Late Cretaceous siliciclastic reservoir, which constitutes the upper part of the post-rift infilling of the Mesozoic East Gobi Basin in SE Mongolia. The Sainshand Formation consists of unconsolidated medium-grained sand, silt and clay intervals deposited in fluvial-lacustrine settings. The uranium deposit is confined within a 60–80 m thick siliciclastic sequence inside aquifer-driven systems. The overall system experienced shallow burial and was never subjected to temperatures higher than 40 °C. This study proposes a comprehensive metallogenic model for this uranium deposit. Sedimentological and mineralogical observations from drill core samples to the microscopic scale (optical and Scanning Electron Microscopy) together with in situ geochemistry of late-formed phases (Laser Ablation–Inductively Coupled Plasma Mass Spectrometry, Electron Probe Microanalysis, Fourier Transform–Infrared Spectroscopy) were considered for the reconstruction of the main stages of U trapping. In the mineralized zone, the uranium ore is expressed as Ca–enriched uraninite (UO2) and less commonly as Ca–enriched phospho-coffinite (U, P)SiO4. Trapping mechanisms include i) complexation (i.e. uranyl-carboxyl complexes), ii) adsorption on organic or clay particles) and iii) reduction by pyrite and by bacterial activity to amorphous uraninite. In all cases, the organic matter plays either the role of trap for uranium or nutrient for bacteria that can trap uranium through their metabolism. The shallow burial diagenesis conditions do not allow direct reduction of U(VI) by organic carbon. The δ34S values of the iron disulfide are very diverse, fluctuating in extreme cases between −50 to + 50‰, with an average δ34S value for framboidal pyrite at 2‰, and −20‰ for euhedral pyrite. The positive and negative values reflect close versus open fractionation systems, while bacterial sulphate reduction (BSR) is active during the whole diagenetic history of the deposit as an essential source of reduced sulfur. Therefore, using detrital organic matter as a carbon source, microorganisms play a significant role in uranium trapping, either as a direct reducing agent for uranium or pyrite formation, which will trap uranium through redox driven epigenetic processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ rallakis_conditions_2021 Serial 176
Permanent link to this record