|   | 
Details
   web
Records
Author Robin, V.; Beaufort, D.; Tertre, E.; Reinholdt, M.; Fromaget, M.; Forestier, S.; Boissezon, H. de; Descostes, M.
Title Fate of dioctahedral smectites in uranium roll front deposits exploited by acidic In Situ Recovery (ISR) solutions Type Journal Article
Year 2020 Publication Applied Clay Science Abbreviated Journal
Volume 187 Issue Pages 105484
Keywords (up) Dissolution, In situ recovery, Ion exchange, Post mining, Remediation, Smectite
Abstract In Situ Recovery (ISR) is the most important process of uranium production in the world (50%). It consists of an injection of a leaching solution into a permeable mineralized aquifer (sandstone), pumping of the solution after dissolution of the ore minerals and recovery of the uranium from the pregnant solution in a surface plant. In this context, the fate of swelling clay minerals such as smectites is of main importance due to their role in the mobility of cationic elements by diverse geochemical processes such as ion-exchange reactions or dissolution. The present study details analysis of dioctahedral smectites before and after in-situ leaching by acidic (H2SO4) ISR solutions. Samples were collected from two sedimentary basins hosting some of the main uranium roll front deposits exploited by acidic ISR (Tortkuduk deposit, Shu-Saryssu basin, Kazakhstan, and Dulaan Uul and Zoovch Ovoo deposits, Sainshand basin, Mongolia). Scanning Electron Microscope and X-Ray Diffraction analysis revealed that dioctahedral smectite is a ubiquitous mineral in all analyzed samples, before and after acidification, and revealed a difference of crystal chemistry of the smectites between deposits of Kazakhstan (beidellite type) and Mongolia (montmorillonite type). Chemical analysis and semi-quantification of the smectites before and after acidification also revealed a difference in chemical reactivity, with a higher dissolution of montmorillonite layers compared to beidellite ones, and the importance of ion-exchange reactions. These findings are consistent with literature data obtained on model systems. The persistence of dioctahedral smectites after several years of acidification is crucial for the understanding of geochemical processes during uranium production or remediation of the aquifers. Finally, based on the analysis of samples from U-deposits hosted in both sedimentary basins, a schematic model of the impact of acid solutions on dioctahedral smectite was proposed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1317 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ robin_fate_2020 Serial 179
Permanent link to this record
 

 
Author Tanwer, N.; Arora, V.; Kant, K.; Singh, B.; Laura, J.S.; Khosla, B.
Title Chapter 17 – Prevalence of Uranium in groundwater of rural and urban regions of India Type Book Chapter
Year 2024 Publication Water Resources Management for Rural Development Abbreviated Journal
Volume Issue Pages 213-234
Keywords (up) Distribution, Heath impacts, Remediation techniques, Sources, Uranium
Abstract Abnormally high uranium (U) prevalence in groundwater is a neoteric subject of concern throughout the world because of its direct impact on human health and well-being. Groundwater is used as the most preferred choice for drinking because of its good quality and ease of availability in rural and urban parts of India, and also in different parts of the world. India is an agriculture-dominant country and its 50–80% irrigational requirement is met by groundwater, besides this nearly 90% of rural and 50% of urban water needs are fulfilled by groundwater. The uranium concentration in groundwater in different parts of India namely Punjab, Haryana, Rajasthan, Madhya Pradesh, Karnataka, etc. found to be varying from 0 mg/L to 1443 mg/L, and in different parts of the world, it is found up to 1400 mg/L in the countries like United States, Canada, Finland, Mongolia, Nigeria, South Korea, Pakistan, Burundi, China, Afghanistan, etc. Various natural factors such as geology, hydro-geochemistry, and prevailing conditions as well as anthropogenic factors including mining, nuclear activities, erratic use of fertilizers, and overexploitation of groundwater resources are responsible for adding uranium in groundwater. Groundwater is considered a primary source of uranium ingestion in human beings as it contributes 85% while food contributes 15%. Uranium affects living beings as a two-way sword, being a radioactive element, causing radiotoxicity, and on the other hand as a heavy metal, it causes chemotoxicity. The main target organs affected by the consumption of uranium-contaminated water are kidneys, bones, lungs, etc. It can cause renal failure, impair cell functioning and bone growth, and mutation in DNA. Although, its toxic effects, being a heavy metal, are more severe than its radiotoxicity. Various techniques are available for the efficient removal of uranium from the groundwater such as bioremediation, nanotechnology-enhanced remediation, adsorption, filtration, etc. This chapter entails a comprehensive investigation of uranium contamination in groundwater of rural and urban parts of India their probable sources, health impacts, treatment, and mitigation techniques available to manage groundwater resources.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor Madhav, S.; Srivastav, A.L.; Izah, S.C.; Hullebusch, E. van
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-443-18778-0 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ madhav_chapter_2024 Serial 152
Permanent link to this record
 

 
Author Zhang, H.; Gao, J.; Xu, L.; Zhang, X.
Title Case studies of radioactivity of drilling mud for in situ leaching uranium mining in China Type Journal Article
Year 2022 Publication Journal of Environmental Radioactivity Abbreviated Journal
Volume 251-252 Issue Pages 106982
Keywords (up) Drilling mud, Exemption management, In situ leaching, Radioactivity
Abstract The drilling mud from in situ leaching uranium mining is a type of low-radioactivity waste that contains natural nuclides and other harmful substances. In order to determine whether the drilling mud can meet the requirements of radioactive exemption management standards, field investigations and data simulations were conducted in this study. Two typical uranium mines were selected for onsite investigations. Drilling mud from different layers (i.e., the upper covering layer and ore-bearing layer) and from different stages (e.g., logging stage mud, drilling expansion stage mud, and mixed mud) was sampled. For each sample, the 238U and 226Ra concentrations of the solid components and the U and 226Ra concentrations of the supernatant were analyzed. The results revealed that the highest 238U and 226Ra concentrations of the solid components were 4122 Bq/kg and 4077 Bq/kg, while the 238U and 226Ra concentrations of the mixed drilling mud were all less than 300 Bq/kg. A radioactivity estimation model was established for scenario analysis. Exemption management screening lines of waste drilling mud, which can be used to classify and treat the drilling project according to the deposit’s grade and conditions, were proposed for in situ leaching drilling projects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0265-931x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ zhang_case_2022 Serial 191
Permanent link to this record
 

 
Author Borrego-Alonso, D.; Quintana-Arnés, B.; Lozano, J.C.
Title Natural radionuclides behaviour in drinking groundwaters from Castilla y León (Spain); radiological implications Type Journal Article
Year 2023 Publication Water Research Abbreviated Journal
Volume 245 Issue Pages 120616
Keywords (up) Drinking water, Environmental monitoring, Natural radioactivity, Public health, Radiological characterisation
Abstract Since the coming into force of the European Council Directive 51/2013 EURATOM and its transposition into the Spanish legislation, the presence of radioactive substances in drinking waters must be kept under surveillance to ensure that the health protection requirements are met. Driven by this regulatory framework, in an attempt to know the starting point from which to design surveillance plans, the groundwaters intended for human consumption of Castilla y León (Spain) have been radiologically characterised by using both low-level γ-ray and α-particle spectrometry to determine the activity concentration of the natural radionuclides needed to account for the indicative dose estimation. This extensive research has comprised the radiological characterisation of more than 400 drinking water samples from one of the European Union’s largest regions. Furthermore, the gross α and gross β activities have been analysed. Results showed a high geographical variability that can be related to the hydrogeological formations where the groundwaters come from. The uranium isotopes, 234U and 238U, are the main radionuclides present in the analysed drinking waters reaching values up to 2000 mBq/L, in the southwestern and western of Castilla y León, where U-rich minerals are part of the host rock. High 210Pb and 226,228Ra occurrences are found in the low permeability igneous and metasedimentary hydrogeological formations of Salamanca province. From a public health protection point of view, 4.4% of the total drinking water samples from intakes exceeded the Indicative Dose parametric value of 0.1 mSv, which is a not negligible number of samples, being very likely related to granitic and metamorphosed host rock under specific local conditions. This fact highlights the need for research and consideration of special surveillance of the groundwaters from these areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1354 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ borrego-alonso_natural_2023 Serial 157
Permanent link to this record
 

 
Author Liesch, T.; Hinrichsen, S.; Goldscheider, N.
Title Uranium in groundwater — Fertilizers versus geogenic sources Type Journal Article
Year 2015 Publication Science of The Total Environment Abbreviated Journal
Volume 536 Issue Pages 981-995
Keywords (up) Drinking water, Fertilizer, Geogenic background, Groundwater, Uranium
Abstract Due to its radiological and toxicological properties even at low concentration levels, uranium is increasingly recognized as relevant contaminant in drinking water from aquifers. Uranium originates from different sources, including natural or geogenic, mining and industrial activities, and fertilizers in agriculture. The goal of this study was to obtain insights into the origin of uranium in groundwater while differentiating between geogenic sources and fertilizers. A literature review concerning the sources and geochemical processes affecting the occurrence and distribution of uranium in the lithosphere, pedosphere and hydrosphere provided the background for the evaluation of data on uranium in groundwater at regional scale. The state of Baden-Württemberg, Germany, was selected for this study, because of its hydrogeological and land-use diversity, and for reasons of data availability. Uranium and other parameters from N=1935 groundwater monitoring sites were analyzed statistically and geospatially. Results show that (i) 1.6% of all water samples exceed the German legal limit for drinking water (10μg/L); (ii) The range and spatial distribution of uranium and occasional peak values seem to be related to geogenic sources; (iii) There is a clear relation between agricultural land-use and low-level uranium concentrations, indicating that fertilizers generate a measurable but low background of uranium in groundwater.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ liesch_uranium_2015 Serial 145
Permanent link to this record
 

 
Author Sahoo, S.K.; Jha, V.N.; Patra, A.C.; Jha, S.K.; Kulkarni, M.S.
Title Scientific background and methodology adopted on derivation of regulatory limit for uranium in drinking water – A global perspective Type Journal Article
Year 2020 Publication Environmental Advances Abbreviated Journal
Volume 2 Issue Pages 100020
Keywords (up) Drinking water, Global policy, Regulatory limits, Toxicity, Uranium
Abstract Guideline values are prescribed for drinking water to ensure long term protection of the public against anticipated potential adverse effects. There is a great public and regulatory agencies interest in the guideline values of uranium due to its complex behavior in natural aquatic system and divergent guideline values across the countries. Wide variability in guideline values of uranium in drinking water may be attributed to toxicity reference point, variation in threshold values, uncertainty within intraspecies and interspecies, resource availability, socio-economic condition, variation in ingestion rate, etc. Although guideline values vary to a great extent, reasonable scientific basis and technical judgments are essential before it could be implemented. Globally guideline values are derived considering its radiological or chemical toxicity. Minimal or no adverse effect criterions are normally chosen as the basis for deriving the guideline values of uranium. In India, the drinking water limit of 60 µg/L has been estimated on the premise of its radiological concern. A guideline concentration of 2 µg/L is recommended in Japan while 1700 µg/L in Russia. The relative merit of different experimental assumption, scientific approach and its methodology adopted for derivation of guideline value of uranium in drinking water in India and other countries is discussed in the paper.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2666-7657 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ sahoo_scientific_2020 Serial 127
Permanent link to this record
 

 
Author Smedley, P.L.; Kinniburgh, D.G.
Title Uranium in natural waters and the environment: Distribution, speciation and impact Type Journal Article
Year 2023 Publication Applied Geochemistry Abbreviated Journal
Volume 148 Issue Pages 105534
Keywords (up) Drinking water, Mine water, NORM, Radionuclide, Redox, U isotopes, Uranium, Uranyl
Abstract The concentrations of U in natural waters are usually low, being typically less than 4 μg/L in river water, around 3.3 μg/L in open seawater, and usually less than 5 μg/L in groundwater. Higher concentrations can occur in both surface water and groundwater and the range spans some six orders of magnitude, with extremes in the mg/L range. However, such extremes in surface water are rare and linked to localized mineralization or evaporation in alkaline lakes. High concentrations in groundwater, substantially above the WHO provisional guideline value for U in drinking water of 30 μg/L, are associated most strongly with (i) granitic and felsic volcanic aquifers, (ii) continental sandstone aquifers especially in alluvial plains and (iii) areas of U mineralization. High-U groundwater provinces are more common in arid and semi-arid terrains where evaporation is an additional factor involved in concentrating U and other solutes. Examples of granitic and felsic volcanic terrains with documented high U concentrations include several parts of peninsular India, eastern USA, Canada, South Korea, southern Finland, Norway, Switzerland and Burundi. Examples of continental sandstone aquifers include the alluvial plains of the Indo-Gangetic Basin of India and Pakistan, the Central Valley, High Plains, Carson Desert, Española Basin and Edwards-Trinity aquifers of the USA, Datong Basin, China, parts of Iraq and the loess of the Chaco-Pampean Plain, Argentina. Many of these plains host eroded deposits of granitic and felsic volcanic precursors which likely act as primary sources of U. Numerous examples exist of groundwater impacted by U mineralization, often accompanied by mining, including locations in USA, Australia, Brazil, Canada, Portugal, China, Egypt and Germany. These may host high to extreme concentrations of U but are typically of localized extent. The overarching mechanisms of U mobilization in water are now well-established and depend broadly on redox conditions, pH and solute chemistry, which are shaped by the geological conditions outlined above. Uranium is recognized to be mobile in its oxic, U(VI) state, at neutral to alkaline pH (7–9) and is aided by the formation of stable U–CO3(±Ca, Mg) complexes. In such oxic and alkaline conditions, U commonly covaries with other similarly controlled anions and oxyanions such as F, As, V and Mo. Uranium is also mobile at acidic pH (2–4), principally as the uranyl cation UO22+. Mobility in U mineralized areas may therefore occur in neutral to alkaline conditions or in conditions with acid drainage, depending on the local occurrence and capacity for pH buffering by carbonate minerals. In groundwater, mobilization has also been observed in mildly (Mn-) reducing conditions. Uranium is immobile in more strongly (Fe-, SO4-) reducing conditions as it is reduced to U(IV) and is either precipitated as a crystalline or ‘non-crystalline’ form of UO2 or is sorbed to mineral surfaces. A more detailed understanding of U chemistry in the natural environment is challenging because of the large number of complexes formed, the strong binding to oxides and humic substances and their interactions, including ternary oxide-humic-U interactions. Improved quantification of these interactions will require updating of the commonly-used speciation software and databases to include the most recent developments in surface complexation models. Also, given their important role in maintaining low U concentrations in many natural waters, the nature and solubility of the amorphous or non-crystalline forms of UO2 that result from microbial reduction of U(VI) need improved quantification. Even where high-U groundwater exists, percentage exceedances of the WHO guideline value are variable and often small. More rigorous testing programmes to establish usable sources are therefore warranted in such vulnerable aquifers. As drinking-water regulation for U is a relatively recent introduction in many countries (e.g. the European Union), testing is not yet routine or established and data are still relatively limited. Acquisition of more data will establish whether analogous aquifers elsewhere in the world have similar patterns of aqueous U distribution. In the high-U groundwater regions that have been recognized so far, the general absence of evidence for clinical health symptoms is a positive finding and tempers the scale of public health concern, though it also highlights a need for continued investigation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-2927 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ smedley_uranium_2023 Serial 118
Permanent link to this record
 

 
Author Shayakhmetov, N.M.; Alibayeva, K.A.; Kaltayev, A.; Panfilov, I.
Title Enhancing uranium in-situ leaching efficiency through the well reverse technique: A study of the effects of reversal time on production efficiency and cost Type Journal Article
Year 2023 Publication Hydrometallurgy Abbreviated Journal
Volume 219 Issue Pages 106086
Keywords (up) Economic evaluation, Hydrodynamic enhancement of mineral production, In-situ leaching, Mineral recovery, Optimal reversal time, Well reversing technique
Abstract In this study, the application of the Well Reversal Technique (WRT) and the impact of reversal time on the efficiency of uranium mining via In-Situ Leaching (ISL) were investigated. A prevalent issue in ISL mineral extraction is the formation of stagnant zones caused by limited access of the lixiviant, which leads to increased operating expenditures. The WRT, which involves altering the function of some wells from injection to production or vice versa, is a potential solution to this problem. The efficiency of WRT is heavily dependent on the well pattern and reversal time. Two commonly used well patterns in ISL are the 9-spot (row arrangement) and 7-spot (hexagonal arrangement). The objective of this study was to determine the optimal reversal time for a 9-spot well pattern through mathematical modeling of hydrodynamic and physico-chemical processes and subsequent economic assessment. A mathematical model of uranium extraction processes was developed using the principles of mass conservation, Darcy’s, and mass action laws. The results obtained for a 9-spot well pattern without reversal, with two reversal options, and a 7-spot scheme were analyzed comparatively. The 7-spot scheme without reversal was found to be the most effective of the options examined. The application of WRT on a 9-spot well pattern allows to enhance production efficiency to a level comparable to that of a 7-spot well pattern. Additionally, the effect of reversal time on recovery was studied based on two well reversal options. The results from calculation revealed that the optimal scenario was when the well reversal is conducted immediately after the time point at which the average concentration of the pregnant solution in the production wells reaches its peak value. The overall efficiency of WRT application was determined through economic calculations of capital (CAPEX) and operating (OPEX) expenditures. Based on economic calculations, it was determined that the utilization of WRT results in a 3–18% increase in mineral production efficiency for a 9-point scheme, depending on the chosen reversal method.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-386x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ shayakhmetov_enhancing_2023 Serial 203
Permanent link to this record
 

 
Author Chen, Y.; Hong, Y.; Huang, D.; Dai, X.; Zhang, M.; Liu, Y.; Xu, Z.
Title Risk assessment management and emergency plan for uranium tailings pond Type Journal Article
Year 2022 Publication Journal of Radiation Research and Applied Sciences Abbreviated Journal
Volume 15 Issue 3 Pages 83-90
Keywords (up) Emergency management, Interpreted structural model (ISM), Resilience, Risk coupling, Uranium tailings pond
Abstract The safety of uranium tailings pond is closely related to social stability and economic development, so it is necessary to improve the emergency management of uranium tailings pond to ensure its safety by adjusting the emergency plan. The Interpretive Structural Model (ISM) is used to analyze the structural relationship between the main risk factors leading to the occurrence of emergencies. The results show that attention should be paid to the risk factors originating from humans and infrastructures, and effective management measures should be adopted in the process of emergency management, for example, people build tighter employee access system, clarify the responsibilities of employees at all levels, and improve monitoring and organizational means. According to the results of ISM analysis, a structural risk control system can be constructed, and a defensive barrier that can effectively block the risk coupling transmission can be designed to prevent the risk from being transformed into an event. For other risks, system resilience management should be strengthened to respond to risks. The process is set as emergency response and accident response. Different management objects use different management methods to make emergency management work efficiently.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1687-8507 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ chen_risk_2022 Serial 128
Permanent link to this record
 

 
Author Brutsaert, W.
Title Global land surface evaporation trend during the past half century: Corroboration by Clausius-Clapeyron scaling Type Journal Article
Year 2017 Publication Advances in Water Resources Abbreviated Journal
Volume 106 Issue Pages 3-5
Keywords (up) Evaporation, Climate change, Evaporation trend
Abstract Analyses of satellite data mainly over the world’s ocean surfaces have shown that during 1986–2006 global average values of atmospheric water vapor, precipitation and evaporation have increased at a relative rate of 0.0013a−1; this is roughly in accordance with the Clausius-Clapeyron equation for the average temperature trend during this period, and amounts to 0.065K−1 at the average temperature of T=14∘C. Application of this concept over the world’s land surfaces yields an average global evaporation trend during the past half century of around 0.4 to 0.5 mma−2; this confirms the values obtained in previous studies with totally different methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0309-1708 ISBN Medium
Area Expedition Conference
Notes Tribute to Professor Garrison Sposito: An Exceptional Hydrologist and Geochemist Approved no
Call Number THL @ christoph.kuells @ Brutsaert20173 Serial 287
Permanent link to this record