|   | 
Details
   web
Records
Author Jaireth, S.; Roach, I.C.; Bastrakov, E.; Liu, S.
Title Basin-related uranium mineral systems in Australia: A review of critical features Type Journal Article
Year 2016 Publication Ore Geology Reviews Abbreviated Journal
Volume 76 Issue Pages 360-394
Keywords (down) Australia’s uranium deposits, Calcrete-uranium, Sandstone-hosted uranium, Unconformity-related uranium
Abstract This paper reviews critical features of basin-related uranium mineral systems in Australia. These mineral systems include Proterozoic unconformity-related uranium systems formed predominantly from diagenetic fluids expelled from sandstones overlying the unconformity, sandstone-hosted uranium systems formed from the influx of oxidised groundwaters through sandstone aquifers, and calcrete uranium systems formed from oxidised groundwaters flowing through palaeochannel aquifers (sand and calcrete). The review uses the so-called ‘source-pathway-trap’ paradigm to summarise critical features of fertile mineral systems. However, the scheme is expanded to include information on the geological setting, age and relative timing of mineralisation, and preservation of mineral systems. The critical features are also summarised in three separate tables. These features can provide the basis to conduct mineral potential and prospectivity analysis in an area. Such analysis requires identification of mappable signatures of above-mentioned critical features in geological, geophysical and geochemical datasets. The review of fertile basin-related systems shows that these systems require the presence of at least four ingredients: a source of leachable uranium (and vanadium and potassium for calcrete-uranium deposits); suitable hydrological architecture enabling connection between the source and the sink (site of accumulation); physical and chemical sinks or traps; and a post-mineralisation setting favourable for preservation. The review also discusses factors that may control the efficiency of mineral systems, assuming that world-class deposits result from more efficient mineral systems. The review presents a brief discussion of factors which may have controlled the formation of large deposits in the Lake Frome region in South Australia, the Chu-Sarysu and Syrdarya Basins in Kazakhstan and calcrete uranium deposits in the Yilgarn region, Western Australia.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-1368 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ jaireth_basin-related_2016 Serial 139
Permanent link to this record
 

 
Author Aderemi, B.A.; Olwal, T.O.; Ndambuki, J.M.; Rwanga, S.S.
Title Groundwater levels forecasting using machine learning models: A case study of the groundwater region 10 at Karst Belt, South Africa Type Journal Article
Year 2023 Publication Systems and Soft Computing Abbreviated Journal
Volume 5 Issue Pages 200049
Keywords (down) Artificial intelligence, Forecasting model, Groundwater levels, Machine learning, Neural networks, Rainfall, Regression, Temperature, Time series
Abstract The crucial role which groundwater resource plays in our environment and the overall well-being of all living things can not be underestimated. Nonetheless, mismanagement of resources, over-exploitation, inadequate supply of surface water and pollution have led to severe drought and an overall drop in groundwater resources’ levels over the past decades. To address this, a groundwater flow model and several mathematical data-driven models have been developed for forecasting groundwater levels. However, there is a problem of unavailability and scarcity of the on-site input data needed by the data-driven models to forecast the groundwater level. Furthermore, as a result of the dynamics and stochastic characteristics of groundwater, there is a need for an appropriate, accurate and reliable forecasting model to solve these challenges. Over the years, the broad application of Machine Learning (ML) and Artificial Intelligence (AI) models are gaining attraction as an alternative solution for forecasting groundwater levels. Against this background, this article provides an overview of forecasting methods for predicting groundwater levels. Also, this article uses ML models such as Regressions Models, Deep Auto-Regressive models, and Nonlinear Autoregressive Neural Networks with External Input (NARX) to forecast groundwater levels using the groundwater region 10 at Karst belt in South Africa as a case study. This was done using Python Mx. Version 1.9.1., and MATLAB R2022a machine learning toolboxes. Moreover, the Coefficient of Determination (R2);, Root Mean Square Error (RMSE), Mutual Information gain, Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and the Mean Absolute Scaled Error (MASE)) models were the forecasting statistical performance metrics used to assess the predictive performance of these models. The results obtained showed that NARX and Support Vector Machine (SVM) have higher performance metrics and accuracy compared to other models used in this study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2772-9419 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Aderemi2023200049 Serial 219
Permanent link to this record
 

 
Author Kumar, V.; Setia, R.; Pandita, S.; Singh, S.; Mitran, T.
Title Assessment of U and As in groundwater of India: A meta-analysis Type Journal Article
Year 2022 Publication Chemosphere Abbreviated Journal
Volume 303 Issue Pages 135199
Keywords (down) Arsenic, Geology, Groundwater, Health risk, Soil texture, Uranium
Abstract More than 2.5 billion people depend upon groundwater worldwide for drinking, and giving quality water has become one of the great apprehensions of human culture. The contamination of Uranium (U) and Arsenic (As) in the groundwater of India is gaining global attention. The current review provides state-of-the-art groundwater contamination with U and As in different zones of India based on geology and soil texture. The average concentration of U in different zones of India was in the order: West Zone (41.07 μg/L) \textgreater North Zone (37.7 μg/L) \textgreater South Zone (13.5 μg/L)\textgreater Central Zone (7.4 μg/L) \textgreater East Zone (5.7 μg/L) \textgreaterSoutheast Zone (2.4 μg/L). The average concentration of As in groundwater of India is in the order: South Zone (369.7 μg/L)\textgreaterCentral Zone (260.4 μg/L)\textgreaterNorth Zone (67.7 μg/L)\textgreaterEast Zone (60.3 μg/L)\textgreaterNorth-east zone (9.78 μg/L)\textgreaterWest zone (4.14 μg/L). The highest concentration of U and As were found in quaternary sediments, but U in clay skeletal and As in loamy skeletal. Results of health risk assessment showed that the average health quotient of U in groundwater for children and adults was less than unity. In contrast, it was greater than unity for As posing a harmful impact on human health. This review provides the baseline data regarding the U and As contamination status in groundwater of India, and appropriate, effective control measures need to be taken to control this problem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0045-6535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ kumar_assessment_2022 Serial 161
Permanent link to this record
 

 
Author Etschmann, B.; Liu, W.; Li, K.; Dai, S.; Reith, F.; Falconer, D.; Kerr, G.; Paterson, D.; Howard, D.; Kappen, P.; Wykes, J.; Brugger, J.
Title Enrichment of germanium and associated arsenic and tungsten in coal and roll-front uranium deposits Type Journal Article
Year 2017 Publication Chemical Geology Abbreviated Journal
Volume 463 Issue Pages 29-49
Keywords (down) Arsenic, Coal, EXAFS and XANES, germanium, Hydrothermal fluids, Metallogenesis, Speciation, Tungsten
Abstract Most of the World’s germanium (Ge) is mined from Ge-rich lignite, where it is commonly associated with elevated arsenic (As), tungsten (W) and beryllium (Be) contents. Over the past decade, new evidence showing that World-class Ge deposits result from the interaction of hydrothermal fluids with organic matter in coal seams has emerged. Yet, the chemical state of Ge and associated metals in lignite remains poorly understood. We used Mega-pixel Synchrotron X-ray Fluorescence (MSXRF), X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) to characterize the oxidation states and chemical bonding environment of Ge, As, and W in two world-class Mesozoic Ge-in-lignite deposits (Lincang, Yunnan, southwestern China; Wulantuga, Inner Mongolia, northeastern China); in lignite-bearing uranium (U) ores from the Beverley deposit (South Australia) hosted in Eocene sandstones; and in lignite and preserved wood in late Oligocene-Miocene fluviatile sediments (Gore, Southland, New Zealand). The aim was to improve our understanding of the enrichment mechanism of Ge in lignite and better evaluate the environmental mobility of Ge and some of the associated metals (specifically As and W) in lignite ores. In all samples, chemical maps show that Ge is distributed homogeneously (down to 2μm) within the organic matter. XANES and EXAFS data show that Ge exists in the tetravalent oxidation state and in a distorted octahedral coordination with O, consistent with complexing of Ge by organic ligands. In some pyrite-bearing samples, a minor fraction of Ge is also present as Ge(IV) in association with pyrite. In contrast, As displays a more complex speciation pattern, sometimes even in a single sample, including As(III), As(V), and As(−I/+II) in solid solution in sulfides. Arsenic in sulfides occurs in anionic and cationic forms, i.e., it shows both the common substitution for S22− and the substitution for Fe recently discovered in some hydrothermal pyrites. Tungsten was present as W(VI) in distorted octahedral (3+3) coordination. The EXAFS data confirm the absence or minor contribution of individual W-rich minerals such as scheelite or ferberite to W mass balance in the studied samples. These data show that Ge, W, and probably some As are scavenged via formation of insoluble, oxygen-bridged metal organic complexes in lignite. Destruction of the organic ligands responsible for fixing Ge and W (As) in these lignites is required for liberating the metals, e.g. from waste materials. Geochemical modelling suggests that Ge, W, Be and As all can be extracted from granitic rocks by dilute, low temperature hydrothermal fluids. Germanium is transported mainly as the tetrahedral Ge(OH)4(aq) complex, but fixed as an octahedral oxy-bridged organic complex. The same situation is valid for W, which is transported at the tetrahedral tungstate ion, but most likely scavenged via formation of a 6-coordinated metal-organic species. The Ge-Be-W±As association in Ge-rich coals reflects the source of the metals as well as related scavenging mechanisms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2541 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ etschmann_enrichment_2017 Serial 183
Permanent link to this record
 

 
Author Kamash, Z.
Title Irrigation technology, society and environment in the Roman Near East Type Journal Article
Year 2012 Publication Journal of Arid Environments Abbreviated Journal
Volume 86 Issue Pages 65-74
Keywords (down) Army, Urbanism, Qanats, Dams, Field systems, Irrigation channels
Abstract This paper uses a multi-faceted approach to understand the use and distribution of different irrigation technologies in the Roman Near East (63 BC – AD 636), looking at the ways in which social and environmental factors affected the implementation of those irrigation technologies. It is argued that no single factor can fully explain how irrigation technologies were used across time and space in this region. Instead, choices in irrigation technology seem to have been governed by a complex nexus of both social and environmental factors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-1963 ISBN Medium
Area Expedition Conference
Notes Ancient Agriculture in the Middle East Approved no
Call Number THL @ christoph.kuells @ Kamash201265 Serial 259
Permanent link to this record