toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Botha, R.; Lindsay, R.; Newman, R.T.; Maleka, P.P.; Chimba, G. url  openurl
  Title Radon in groundwater baseline study prior to unconventional shale gas development and hydraulic fracturing in the Karoo Basin (South Africa) Type Journal Article
  Year 2019 Publication Applied Radiation and Isotopes Abbreviated Journal  
  Volume 147 Issue Pages 7-13  
  Keywords (down)  
  Abstract The prospect of unconventional shale gas development in the semi-arid Karoo Basin (South Africa) has created the prerequisite to temporally characterise the natural radioactivity in associated groundwater which is solely depended on for drinking and agriculture purposes. Radon (222Rn) was the primary natural radionuclide of interest in this study; however, supplementary radium (226Ra and 228Ra) in-water measurements were also conducted. A total of 53 aquifers spanning three provinces were studied during three separate measurement campaigns from 2014 to 2016. The Karoo Basin’s natural radon-in-water levels can be characterised by a minimum of 1 ± 1 Bq/L (consistent with zero or below LLD), a maximum of 183 ± 18 Bq/L and mean of 41 ± 5 Bq/L. The mean radon-in-water levels for shallow aquifers were systematically higher (55 ± 10 Bq/L) compared to deep (14 ± 3 Bq/L) or mixed aquifers (20 ± 6 Bq/L). Radon-in-water activity concentration fluctuations were predominantly observed from shallow aquifers compared to the generally steady levels of deep aquifers. A collective seasonal mean radon-in-water levels increase from the winter of 2014 (44 ± 8 Bq/L) to winter of 2016 (61 ± 16 Bq/L) was noticed which could be related to the extreme national drought experienced in 2015. Radium-in-water (228Ra and 226Ra) levels ranged from below detection level to a maximum of 0.008 Bq/L (226Ra) and 0.015 Bq/L (228Ra). The 228Ra/226Ra ratio was characterised by a minimum of 0.93, a maximum of 6.5 and a mean value of 3.3 ± 1.3. Developing and improving baseline naturally occurring radionuclide groundwater databases is vital to study potential radiological environmental impacts attributed to industrial processes such as hydraulic fracturing or mining.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ botha_radon_2019 Serial 169  
Permanent link to this record
 

 
Author Boulesteix, T.; Cathelineau, M.; Deloule, E.; Brouand, M.; Toubon, H.; Lach, P.; Fiet, N. url  openurl
  Title Ilmenites and their alteration products, sinkholes for uranium and radium in roll-front deposits after the example of South Tortkuduk (Kazakhstan) Type Journal Article
  Year 2019 Publication Journal of Geochemical Exploration Abbreviated Journal  
  Volume 206 Issue Pages 106343  
  Keywords (down)  
  Abstract The approximate determination of average Ra/U disequilibria in orebodies is one of the most common causes of errors in U reserve estimations. In roll-front deposits, the disequilibria are however frequently distributed following complex geometries, which must be fully understood to prevent major U reserve overestimates and costly unproductive extractive operations. The processes responsible for disruption of the radioactive equilibria and the U and Ra carriers in such complex natural systems remain poorly constrained. In this contribution, we propose an innovative approach, mixing orebody to sub-grain scale studies to unravel the distribution of U and Ra and the processes responsible for their concentration and uncoupling. Using mineral separations, gamma spectrometry and mineral-chemical analyses, we identified the Fe-Ti clusters (altered ilmenite + pyrite/marcasite) as the microsites for coffinite precipitation and Ra concentration. To understand the influence of such clusters on the distribution of U and Ra at the deposit scale, whole-rock Ra/U disequilibria were measured and mapped at a series of ten drill holes along a profile crosscutting the studied roll-front. The main Ra/U disequilibria are encountered around the mineralization in low U content zones. They are controlled by two main processes. (1) In the oxidized zones, the immobility of 230Th with respect to the U produces patches of Ra disequilibria (carried by the altered U minerals). (2) In the immediate vicinity of the roll-front, the dissolution of the mineralization produces an Ra flux trapped by the alteration products of ilmenites, as definitely confirmed by direct SIMS measurements. Such a process is responsible for the Ra disequilibria envelope located downstream of the richest ores, also known as Ra halo. The highest Ra/U ratios correspond to oxidized upstream samples, but most other high Ra/U ratios are from reduced downstream samples close to the mineralization. Such a low to medium U content envelope with high Ra/U ratios constitutes the main cause of U reserve overestimations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-6742 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ boulesteix_ilmenites_2019 Serial 181  
Permanent link to this record
 

 
Author Ingham, E.S.; Cook, N.J.; Cliff, J.; Ciobanu, C.L.; Huddleston, A. url  openurl
  Title A combined chemical, isotopic and microstructural study of pyrite from roll-front uranium deposits, Lake Eyre Basin, South Australia Type Journal Article
  Year 2014 Publication Geochimica et Cosmochimica Acta Abbreviated Journal  
  Volume 125 Issue Pages 440-465  
  Keywords (down)  
  Abstract The common sulfide mineral pyrite is abundant throughout sedimentary uranium systems at Pepegoona, Pepegoona West and Pannikan, Lake Eyre Basin, South Australia. Combined chemical, isotopic and microstructural analysis of pyrite indicates variation in fluid composition, sulfur source and precipitation conditions during a protracted mineralization event. The results show the significant role played by pyrite as a metal scavenger and monitor of fluid changes in low-temperature hydrothermal systems. In-situ micrometer-scale sulfur isotope analyses of pyrite demonstrated broad-scale isotopic heterogeneity (δ34S=−43.9 to +32.4‰VCDT), indicative of complex, multi-faceted pyrite evolution, and sulfur derived from more than a single source. Preserved textures support this assertion and indicate a genetic model involving more than one phase of pyrite formation. Authigenic pyrite underwent prolonged evolution and recrystallization, evidenced by a genetic relationship between archetypal framboidal aggregates and pyrite euhedra. Secondary hydrothermal pyrite commonly displays hyper-enrichment of several trace elements (Mn, Co, Ni, As, Se, Mo, Sb, W and Tl) in ore-bearing horizons. Hydrothermal fluids of magmatic and meteoric origins supplied metals to the system but the geochemical signature of pyrite suggests a dominantly granitic source and also the influence of mafic rock types. Irregular variation in δ34S, coupled with oscillatory trace element zonation in secondary pyrite, is interpreted in terms of continuous variations in fluid composition and cycles of diagenetic recrystallization. A late-stage oxidizing fluid may have mobilized selenium from pre-existing pyrite. Subsequent restoration of reduced conditions within the aquifer caused ongoing pyrite re-crystallization and precipitation of selenium as native selenium. These results provide the first qualitative constraints on the formation mechanisms of the uranium deposits at Beverley North. Insights into depositional conditions and sources of both sulfide and uranium mineralization and an improved understanding of pyrite geochemistry can also underpin an effective vector for uranium exploration at Beverley North and other sedimentary systems of the Lake Eyre Basin, as well as in comparable geological environments elsewhere.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-7037 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ ingham_combined_2014 Serial 188  
Permanent link to this record
 

 
Author Uhrie, J.L.; Drever, J.I.; Colberg, P.J.S.; Nesbitt, C.C. url  openurl
  Title In situ immobilization of heavy metals associated with uranium leach mines by bacterial sulfate reduction Type Journal Article
  Year 1996 Publication Hydrometallurgy Abbreviated Journal  
  Volume 43 Issue 1 Pages 231-239  
  Keywords (down)  
  Abstract Laboratory experiments with mixed populations of sulfate-reducing bactreria were shown to mediate the removal of milligrams/liter concentrations of uranium, selenium, arsenic and vanadium from aqueous solution via reduction, precipitation and adsorption. Results of laboratory experiments with active sulfidogenic biomass suggest that injection of sulfate and a source of carbon could enhance anaerobic microbial activity in and around uranium leach mines leading to in situ immobilization contaminating metals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ uhrie_situ_1996 Serial 197  
Permanent link to this record
 

 
Author Romeo, N.; Mabry, J.; Hillegonds, D.; Kainz, G.; Jaklitsch, M.; Matsumoto, T. url  openurl
  Title Developments of a field gas extraction device and krypton purification system for groundwater radio-krypton dating at the IAEA Type Journal Article
  Year 2022 Publication Applied Radiation and Isotopes Abbreviated Journal  
  Volume 189 Issue Pages 110450  
  Keywords (down)  
  Abstract The long-lived radio-krypton isotope 81Kr (t1/2 = 2.29 × 105 yr) is an ideal tracer for old groundwater age dating in the range of 105–106 years which goes beyond the reach of radio-carbon (14C) age dating. Analytical breakthrough made over the last two decades in Atom Trap Trace Analysis (ATTA) has enabled the use of this isotope with extremely low abundance (81Kr/Kr = 6 × 10−13) to be used as a practical dating tool for very old groundwater. The International Atomic Energy Agency aims to provide this new isotope tool for better groundwater resource management of Member States and developed a field sampling device to collect dissolved gas samples from groundwater and a system to separate and purify trace amounts of krypton from the gas samples for the ATTA analysis. The design, setup and performances of our sampling and purification systems are described here. Our system can produce a high purity aliquot of about 5 μL of krypton from 5 L of air sample (recovery yield of >90%). The samples made by our system were confirmed to be acceptable for the ATTA analysis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0969-8043 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Romeo2022110450 Serial 214  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: