toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ibrahim, A.S.; Zayed, I.S.A.; Abdelhaleem, F.S.; Afify, M.M.; Ahmed, A.; Abd-Elaty, I. url  openurl
  Title Identifying cost-effective locations of storage dams for rainfall harvesting and flash flood mitigation in arid and semi-arid regions Type Journal Article
  Year 2023 Publication Journal of Hydrology: Regional Studies Abbreviated Journal  
  Volume 50 Issue Pages 101526  
  Keywords (down) Flash flood, Morphometric parameters, GIS, Cost-effective, Wadi Tayyibah, Dams  
  Abstract Study region Wadi Tayyibah is located in south Sinai, Egypt, in a region called Abou Zenima, and it is used to develop this study. Study focus Flash floods tremendously impact many facets of human life due to their destructive consequences and the costs associated with mitigating efforts. This study aims to evaluate the harvesting of Runoff by delineating the watersheds using the Hydrologic Engineering Center-1 (HEC-1) model and ArcGIS software in trying to benefit from it in different ways. All morphometric parameters of the basin were considered, and the risk degree of the different sub-basins was determined. The suitable locations of dams were identified using a Geographical Information System (GIS) using the basin’s morphometric characteristics. New hydrological insights for the region The study proposed a total number of eight dams, including five dams that were recommended for sub-basin (1) and three dams in sub-basin (4), while sub-basins (2) and (3) are not suitable locations to build dams according to the contour map of Wadi Tayyibah. Results indicate that, based on the constructed flash flood hazard maps and the basin’s detailed morphometric characteristics, the best locations of dams are Dam (3) in sub-basin (1) and Dam (7) in sub-basin (4), where the runoff volume reached 3.13 million cubic meters (Mm3) and 5.56 Mm3 for return period 100, respectively. This study is useful for decision-makers and designers for using morphometric parameters and flash flood hazard degree maps to select dam locations. Also, the cost-benefit analysis for using the morphometric parameters is required to be investigated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2214-5818 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Ibrahim2023101526 Serial 238  
Permanent link to this record
 

 
Author Brutsaert, W. url  openurl
  Title Global land surface evaporation trend during the past half century: Corroboration by Clausius-Clapeyron scaling Type Journal Article
  Year 2017 Publication Advances in Water Resources Abbreviated Journal  
  Volume 106 Issue Pages 3-5  
  Keywords (down) Evaporation, Climate change, Evaporation trend  
  Abstract Analyses of satellite data mainly over the world’s ocean surfaces have shown that during 1986–2006 global average values of atmospheric water vapor, precipitation and evaporation have increased at a relative rate of 0.0013a−1; this is roughly in accordance with the Clausius-Clapeyron equation for the average temperature trend during this period, and amounts to 0.065K−1 at the average temperature of T=14∘C. Application of this concept over the world’s land surfaces yields an average global evaporation trend during the past half century of around 0.4 to 0.5 mma−2; this confirms the values obtained in previous studies with totally different methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0309-1708 ISBN Medium  
  Area Expedition Conference  
  Notes Tribute to Professor Garrison Sposito: An Exceptional Hydrologist and Geochemist Approved no  
  Call Number THL @ christoph.kuells @ Brutsaert20173 Serial 287  
Permanent link to this record
 

 
Author Chen, Y.; Hong, Y.; Huang, D.; Dai, X.; Zhang, M.; Liu, Y.; Xu, Z. url  openurl
  Title Risk assessment management and emergency plan for uranium tailings pond Type Journal Article
  Year 2022 Publication Journal of Radiation Research and Applied Sciences Abbreviated Journal  
  Volume 15 Issue 3 Pages 83-90  
  Keywords (down) Emergency management, Interpreted structural model (ISM), Resilience, Risk coupling, Uranium tailings pond  
  Abstract The safety of uranium tailings pond is closely related to social stability and economic development, so it is necessary to improve the emergency management of uranium tailings pond to ensure its safety by adjusting the emergency plan. The Interpretive Structural Model (ISM) is used to analyze the structural relationship between the main risk factors leading to the occurrence of emergencies. The results show that attention should be paid to the risk factors originating from humans and infrastructures, and effective management measures should be adopted in the process of emergency management, for example, people build tighter employee access system, clarify the responsibilities of employees at all levels, and improve monitoring and organizational means. According to the results of ISM analysis, a structural risk control system can be constructed, and a defensive barrier that can effectively block the risk coupling transmission can be designed to prevent the risk from being transformed into an event. For other risks, system resilience management should be strengthened to respond to risks. The process is set as emergency response and accident response. Different management objects use different management methods to make emergency management work efficiently.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1687-8507 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ chen_risk_2022 Serial 128  
Permanent link to this record
 

 
Author Shayakhmetov, N.M.; Alibayeva, K.A.; Kaltayev, A.; Panfilov, I. url  openurl
  Title Enhancing uranium in-situ leaching efficiency through the well reverse technique: A study of the effects of reversal time on production efficiency and cost Type Journal Article
  Year 2023 Publication Hydrometallurgy Abbreviated Journal  
  Volume 219 Issue Pages 106086  
  Keywords (down) Economic evaluation, Hydrodynamic enhancement of mineral production, In-situ leaching, Mineral recovery, Optimal reversal time, Well reversing technique  
  Abstract In this study, the application of the Well Reversal Technique (WRT) and the impact of reversal time on the efficiency of uranium mining via In-Situ Leaching (ISL) were investigated. A prevalent issue in ISL mineral extraction is the formation of stagnant zones caused by limited access of the lixiviant, which leads to increased operating expenditures. The WRT, which involves altering the function of some wells from injection to production or vice versa, is a potential solution to this problem. The efficiency of WRT is heavily dependent on the well pattern and reversal time. Two commonly used well patterns in ISL are the 9-spot (row arrangement) and 7-spot (hexagonal arrangement). The objective of this study was to determine the optimal reversal time for a 9-spot well pattern through mathematical modeling of hydrodynamic and physico-chemical processes and subsequent economic assessment. A mathematical model of uranium extraction processes was developed using the principles of mass conservation, Darcy’s, and mass action laws. The results obtained for a 9-spot well pattern without reversal, with two reversal options, and a 7-spot scheme were analyzed comparatively. The 7-spot scheme without reversal was found to be the most effective of the options examined. The application of WRT on a 9-spot well pattern allows to enhance production efficiency to a level comparable to that of a 7-spot well pattern. Additionally, the effect of reversal time on recovery was studied based on two well reversal options. The results from calculation revealed that the optimal scenario was when the well reversal is conducted immediately after the time point at which the average concentration of the pregnant solution in the production wells reaches its peak value. The overall efficiency of WRT application was determined through economic calculations of capital (CAPEX) and operating (OPEX) expenditures. Based on economic calculations, it was determined that the utilization of WRT results in a 3–18% increase in mineral production efficiency for a 9-point scheme, depending on the chosen reversal method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-386x ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ shayakhmetov_enhancing_2023 Serial 203  
Permanent link to this record
 

 
Author Smedley, P.L.; Kinniburgh, D.G. url  openurl
  Title Uranium in natural waters and the environment: Distribution, speciation and impact Type Journal Article
  Year 2023 Publication Applied Geochemistry Abbreviated Journal  
  Volume 148 Issue Pages 105534  
  Keywords (down) Drinking water, Mine water, NORM, Radionuclide, Redox, U isotopes, Uranium, Uranyl  
  Abstract The concentrations of U in natural waters are usually low, being typically less than 4 μg/L in river water, around 3.3 μg/L in open seawater, and usually less than 5 μg/L in groundwater. Higher concentrations can occur in both surface water and groundwater and the range spans some six orders of magnitude, with extremes in the mg/L range. However, such extremes in surface water are rare and linked to localized mineralization or evaporation in alkaline lakes. High concentrations in groundwater, substantially above the WHO provisional guideline value for U in drinking water of 30 μg/L, are associated most strongly with (i) granitic and felsic volcanic aquifers, (ii) continental sandstone aquifers especially in alluvial plains and (iii) areas of U mineralization. High-U groundwater provinces are more common in arid and semi-arid terrains where evaporation is an additional factor involved in concentrating U and other solutes. Examples of granitic and felsic volcanic terrains with documented high U concentrations include several parts of peninsular India, eastern USA, Canada, South Korea, southern Finland, Norway, Switzerland and Burundi. Examples of continental sandstone aquifers include the alluvial plains of the Indo-Gangetic Basin of India and Pakistan, the Central Valley, High Plains, Carson Desert, Española Basin and Edwards-Trinity aquifers of the USA, Datong Basin, China, parts of Iraq and the loess of the Chaco-Pampean Plain, Argentina. Many of these plains host eroded deposits of granitic and felsic volcanic precursors which likely act as primary sources of U. Numerous examples exist of groundwater impacted by U mineralization, often accompanied by mining, including locations in USA, Australia, Brazil, Canada, Portugal, China, Egypt and Germany. These may host high to extreme concentrations of U but are typically of localized extent. The overarching mechanisms of U mobilization in water are now well-established and depend broadly on redox conditions, pH and solute chemistry, which are shaped by the geological conditions outlined above. Uranium is recognized to be mobile in its oxic, U(VI) state, at neutral to alkaline pH (7–9) and is aided by the formation of stable U–CO3(±Ca, Mg) complexes. In such oxic and alkaline conditions, U commonly covaries with other similarly controlled anions and oxyanions such as F, As, V and Mo. Uranium is also mobile at acidic pH (2–4), principally as the uranyl cation UO22+. Mobility in U mineralized areas may therefore occur in neutral to alkaline conditions or in conditions with acid drainage, depending on the local occurrence and capacity for pH buffering by carbonate minerals. In groundwater, mobilization has also been observed in mildly (Mn-) reducing conditions. Uranium is immobile in more strongly (Fe-, SO4-) reducing conditions as it is reduced to U(IV) and is either precipitated as a crystalline or ‘non-crystalline’ form of UO2 or is sorbed to mineral surfaces. A more detailed understanding of U chemistry in the natural environment is challenging because of the large number of complexes formed, the strong binding to oxides and humic substances and their interactions, including ternary oxide-humic-U interactions. Improved quantification of these interactions will require updating of the commonly-used speciation software and databases to include the most recent developments in surface complexation models. Also, given their important role in maintaining low U concentrations in many natural waters, the nature and solubility of the amorphous or non-crystalline forms of UO2 that result from microbial reduction of U(VI) need improved quantification. Even where high-U groundwater exists, percentage exceedances of the WHO guideline value are variable and often small. More rigorous testing programmes to establish usable sources are therefore warranted in such vulnerable aquifers. As drinking-water regulation for U is a relatively recent introduction in many countries (e.g. the European Union), testing is not yet routine or established and data are still relatively limited. Acquisition of more data will establish whether analogous aquifers elsewhere in the world have similar patterns of aqueous U distribution. In the high-U groundwater regions that have been recognized so far, the general absence of evidence for clinical health symptoms is a positive finding and tempers the scale of public health concern, though it also highlights a need for continued investigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0883-2927 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ smedley_uranium_2023 Serial 118  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: