toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hdeib, R.; Aouad, M. url  openurl
  Title Rainwater harvesting systems: An urban flood risk mitigation measure in arid areas Type Journal Article
  Year 2023 Publication (down) Water Science and Engineering Abbreviated Journal  
  Volume 16 Issue 3 Pages 219-225  
  Keywords Rainwater harvesting, Urban floods, Flood map, Hydrodynamic model, Built environment, Arid areas  
  Abstract Rainwater harvesting (RWH) systems have been developed to compensate for shortage in the water supply worldwide. Such systems are not very common in arid areas, particularly in the Gulf Region, due to the scarcity of rainfall and their reduced efficiency in covering water demand and reducing water consumption rates. In spite of this, RWH systems have the potential to reduce urban flood risks, particularly in densely populated areas. This study aimed to assess the potential use of RWH systems as urban flood mitigation measures in arid areas. Their utility in the retention of stormwater runoff and the reduction of water depth and extent were evaluated. The study was conducted in a residential area in Bahrain that experienced waterlogging after heavy rainfall events. The water demand patterns of housing units were analyzed, and the daily water balance for RWH tanks was evaluated. The effect of the implementation of RWH systems on the flood volume was evaluated with a two-dimensional hydrodynamic model. Flood simulations were conducted in several rainfall scenarios with different probabilities of occurrence. The results showed significant reductions in the flood depth and flood extent, but these effects were highly dependent on the rainfall intensity of the event. RWH systems are effective flood mitigation measures, particularly in urban arid regions short of proper stormwater control infrastructure, and they enhance the resilience of the built environment to urban floods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1674-2370 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Hdeib2023219 Serial 242  
Permanent link to this record
 

 
Author Borrego-Alonso, D.; Quintana-Arnés, B.; Lozano, J.C. url  openurl
  Title Natural radionuclides behaviour in drinking groundwaters from Castilla y León (Spain); radiological implications Type Journal Article
  Year 2023 Publication (down) Water Research Abbreviated Journal  
  Volume 245 Issue Pages 120616  
  Keywords Drinking water, Environmental monitoring, Natural radioactivity, Public health, Radiological characterisation  
  Abstract Since the coming into force of the European Council Directive 51/2013 EURATOM and its transposition into the Spanish legislation, the presence of radioactive substances in drinking waters must be kept under surveillance to ensure that the health protection requirements are met. Driven by this regulatory framework, in an attempt to know the starting point from which to design surveillance plans, the groundwaters intended for human consumption of Castilla y León (Spain) have been radiologically characterised by using both low-level γ-ray and α-particle spectrometry to determine the activity concentration of the natural radionuclides needed to account for the indicative dose estimation. This extensive research has comprised the radiological characterisation of more than 400 drinking water samples from one of the European Union’s largest regions. Furthermore, the gross α and gross β activities have been analysed. Results showed a high geographical variability that can be related to the hydrogeological formations where the groundwaters come from. The uranium isotopes, 234U and 238U, are the main radionuclides present in the analysed drinking waters reaching values up to 2000 mBq/L, in the southwestern and western of Castilla y León, where U-rich minerals are part of the host rock. High 210Pb and 226,228Ra occurrences are found in the low permeability igneous and metasedimentary hydrogeological formations of Salamanca province. From a public health protection point of view, 4.4% of the total drinking water samples from intakes exceeded the Indicative Dose parametric value of 0.1 mSv, which is a not negligible number of samples, being very likely related to granitic and metamorphosed host rock under specific local conditions. This fact highlights the need for research and consideration of special surveillance of the groundwaters from these areas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ borrego-alonso_natural_2023 Serial 157  
Permanent link to this record
 

 
Author Soh, Q.Y.; O’Dwyer, E.; Acha, S.; Shah, N. url  openurl
  Title Robust optimisation of combined rainwater harvesting and flood mitigation systems Type Journal Article
  Year 2023 Publication (down) Water Research Abbreviated Journal  
  Volume 245 Issue Pages 120532  
  Keywords Rainwater harvesting, Flood mitigation, Robust stochastic optimisation, Sustainable environmental engineering, Decision tool, Urban residential estates  
  Abstract Combined large-scale rainwater harvesting (RWH) and flood mitigation systems are promising as a sustainable water management strategy in urban areas. These are multi-purpose infrastructure that not only provide a secondary, localised water resource, but can also reduce discharge and hence loads on any downstream wastewater networks if these are integrated into the wider water network. However, the performance of these systems is dependent on the specific design used for its local catchment which can vary significantly between different implementations. A multitude of design strategies exist, however there is no universally accepted standard framework. To tackle these issues, this paper presents a two-player optimisation framework which utilises a stochastic design optimisation model and a competing, high-intensity rainfall design model to optimise passively-operated RWH systems. A customisable tool set is provided, under which optimisation models specific to a given catchment can be built quickly. This reduces the barriers to implementing computationally complex sizing strategies and encouraging more resource-efficient systems to be built. The framework was applied to a densely populated high-rise residential estate, eliminating overflow events from historical rainfall. The optimised configuration resulted in a 32% increase in harvested water yield, but its ability to meet irrigation demands was limited by the operational levels of the treatment pump. Hence, with the inclusion of operational levels in the optimisation model, the framework can provide an efficient large-scale RWH system that is capable of simultaneously meeting water demands and reducing stresses within and beyond its local catchment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1354 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Soh2023120532 Serial 243  
Permanent link to this record
 

 
Author Arya, S.; Kumar, A. url  openurl
  Title Evaluation of stormwater management approaches and challenges in urban flood control Type Journal Article
  Year 2023 Publication (down) Urban Climate Abbreviated Journal  
  Volume 51 Issue Pages 101643  
  Keywords Flood risk, Green infrastructure (GI), Stormwater management, Stormwater modelling, Vulnerability assessment, Urban floods  
  Abstract Across the globe, the damage caused by urban floods has increased manifold. The unchecked development has encroached the natural drainage, and the conventional drainage systems are inadequate in handling the augmented hydrological response. To counter this, a variety of approaches with the ability to adjust within the constraints of complex environments by managing surface runoff are being widely investigated and applied worldwide. These can put the flood water to better use, and the ecological balance may get restored. This review discusses recent progress made in the area of Green Infrastructure (GI), modelling tools that help in stormwater management, vulnerability analysis and flood risk assessment. Different ways of handling the problem are summarized through an extensive literature survey. The gaps and barriers that impede the implementation of stormwater management solutions and strategies for further improvement have also been presented. A case study of Gurugram city, India depicting the challenges being faced by urban flooding and the possible solutions through an expert survey is also presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0955 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Arya2023101643 Serial 224  
Permanent link to this record
 

 
Author Aderemi, B.A.; Olwal, T.O.; Ndambuki, J.M.; Rwanga, S.S. url  openurl
  Title Groundwater levels forecasting using machine learning models: A case study of the groundwater region 10 at Karst Belt, South Africa Type Journal Article
  Year 2023 Publication (down) Systems and Soft Computing Abbreviated Journal  
  Volume 5 Issue Pages 200049  
  Keywords Artificial intelligence, Forecasting model, Groundwater levels, Machine learning, Neural networks, Rainfall, Regression, Temperature, Time series  
  Abstract The crucial role which groundwater resource plays in our environment and the overall well-being of all living things can not be underestimated. Nonetheless, mismanagement of resources, over-exploitation, inadequate supply of surface water and pollution have led to severe drought and an overall drop in groundwater resources’ levels over the past decades. To address this, a groundwater flow model and several mathematical data-driven models have been developed for forecasting groundwater levels. However, there is a problem of unavailability and scarcity of the on-site input data needed by the data-driven models to forecast the groundwater level. Furthermore, as a result of the dynamics and stochastic characteristics of groundwater, there is a need for an appropriate, accurate and reliable forecasting model to solve these challenges. Over the years, the broad application of Machine Learning (ML) and Artificial Intelligence (AI) models are gaining attraction as an alternative solution for forecasting groundwater levels. Against this background, this article provides an overview of forecasting methods for predicting groundwater levels. Also, this article uses ML models such as Regressions Models, Deep Auto-Regressive models, and Nonlinear Autoregressive Neural Networks with External Input (NARX) to forecast groundwater levels using the groundwater region 10 at Karst belt in South Africa as a case study. This was done using Python Mx. Version 1.9.1., and MATLAB R2022a machine learning toolboxes. Moreover, the Coefficient of Determination (R2);, Root Mean Square Error (RMSE), Mutual Information gain, Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Mean Absolute Error (MAE), and the Mean Absolute Scaled Error (MASE)) models were the forecasting statistical performance metrics used to assess the predictive performance of these models. The results obtained showed that NARX and Support Vector Machine (SVM) have higher performance metrics and accuracy compared to other models used in this study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2772-9419 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Aderemi2023200049 Serial 219  
Permanent link to this record
 

 
Author Holmes, M.; Campbell, E.E.; Wit, M. de; Taylor, J.C. url  openurl
  Title Can diatoms be used as a biomonitoring tool for surface and groundwater?: Towards a baseline for Karoo water Type Journal Article
  Year 2023 Publication (down) South African Journal of Botany Abbreviated Journal  
  Volume 161 Issue Pages 211-221  
  Keywords Bioindicator, Diatom, Hydraulic fracturing, Karoo, Water quality  
  Abstract The environmental risks from shale gas extraction through the unconventional method of ‘fracking’ are considerable and impact on water supplies below and above ground. Since 2010 the recovery of natural shale gas through fracking has been proposed in parts of the fragile semi-arid ecosystems that make up the Karoo biome in South Africa. These unique ecosystems are heavily reliant on underground water, intermittent and ephemeral springs, which are at great risk of contamination by fracking processes. Diatoms are present in all water bodies and reflect aspects of the environment in which they are located. As the possibility of fracking has not been removed, the aim of the project was to determine if diatoms could be used for rapid biomonitoring of underground and surface waters in the Karoo. Over a period of 24 months, water samples and diatom species were collected simultaneously from 65 sites. A total of 388 diatom taxa were identified from 290 samples with seasonal and substrate variation affecting species composition but not the environmental information. Species diversity information, on the other hand, often varied significantly between substrates within a single sample. Analysis using CCA established that the diatom composition was affected by lithium, oxidized nitrogen, electrical conductivity, and sulphate levels in the sampled water. We conclude that changes in diatom community composition in the Karoo do reflect the water chemistry and could be useful as bioindicators.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0254-6299 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ holmes_can_2023 Serial 163  
Permanent link to this record
 

 
Author Zhang, Y.; Liu, X.; Yuan, S.; Song, J.; Chen, W.; Dias, D. url  openurl
  Title A two-dimensional experimental study of active progressive failure of deeply buried Qanat tunnels in sandy ground Type Journal Article
  Year 2023 Publication (down) Soils and Foundations Abbreviated Journal  
  Volume 63 Issue 3 Pages 101323  
  Keywords Qanat tunnel, Sand, Failure effect, Soil arching, Model test  
  Abstract As an ancient underground hydraulic engineering facility, the Qanat system has been used to draw groundwater from arid regions. A qanat is a horizontal tunnel with a slight incline that draws groundwater from a higher location and delivers it to lower agricultural land. During long-term water delivery, the qanat tunnel has experienced different degrees of aging and collapse, which may result in the significant ground settlement and even disasters. This paper developed a two-dimensional laboratory system to investigate the influence of progressive failure on the stability of deeply buried qanat tunnels. The developed system is fully instrumented with a particle image velocimetry (PIV) system and earth pressure and displacement monitoring. A special cylindrical membrane tube is designed and connected to an advanced pressure–volume controller to simulate the step-wise failure process of the tunnel. Three model tests were conducted on a dry sand considering the buried qanat tunnels at three different depths. Experimental results clearly show the progressive evolution of soil arching effect in the dry sand associated with the progressive failure of the tunnels. The failure of the Qanat ground starts from the vault and develops upwards, which is closely related to the evolution of stress contour at three consecutive stages. Ground surface settlement and volume loss corresponding to three burial depths were compared. A deeply buried qanat tunnel has a small effect on surface settlement. Earth pressure evolution on the 2D plane shows the load redistribution when the qanat collapses. The maximum arch and the initial point of the limit state correspond to a volume loss of 12.5 % and 50 %, respectively. For the collapse of the deep buried qanat tunnel, ground earth pressure evolution can be divided into a stress-increasing region, stress-decreasing region, and no redistribution region. Furthermore, a multi trap-door model considering soil expansion is proposed to describe the progressive failure behavior and its effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0038-0806 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ Zhang2023101323 Serial 274  
Permanent link to this record
 

 
Author Jroundi, F.; Povedano-Priego, C.; Pinel-Cabello, M.; Descostes, M.; Grizard, P.; Purevsan, B.; Merroun, M.L. url  openurl
  Title Evidence of microbial activity in a uranium roll-front deposit: Unlocking their potential role as bioenhancers of the ore genesis Type Journal Article
  Year 2023 Publication (down) Science of The Total Environment Abbreviated Journal  
  Volume 861 Issue Pages 160636  
  Keywords ISR, Metatranscriptomes, Microbial metabolisms, Ore genesis, Roll-front deposit, Uranium  
  Abstract Uranium (U) roll-front deposits constitute a valuable source for an economical extraction by in situ recovery (ISR) mining. Such technology may induce changes in the subsurface microbiota, raising questions about the way their activities could build a functional ecosystem in such extreme environments (i.e.: oligotrophy and high SO4 concentration and salinity). Additionally, more information is needed to dissipate the doubts about the microbial role in the genesis of such U orebodies. A U roll-front deposit hosted in an aquifer driven system (in Zoovch Ovoo, Mongolia), intended for mining by acid ISR, was previously explored and showed to be governed by a complex bacterial diversity, linked to the redox zonation and the geochemical conditions. Here for the first time, transcriptional activities of microorganisms living in such U ore deposits are determined and their metabolic capabilities allocated in the three redox-inherited compartments, naturally defined by the roll-front system. Several genes encoding for crucial metabolic pathways demonstrated a strong biological role controlling the subsurface cycling of many elements including nitrate, sulfate, metals and radionuclides (e.g.: uranium), through oxidation-reduction reactions. Interestingly, the discovered transcriptional behaviour gives important insights into the good microbial adaptation to the geochemical conditions and their active contribution to the stabilization of the U ore deposits. Overall, evidences on the importance of these microbial metabolic activities in the aquifer system are discussed that may clarify the doubts on the microbial role in the genesis of low-temperature U roll-front deposits, along the Zoovch Ovoo mine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ jroundi_evidence_2023 Serial 138  
Permanent link to this record
 

 
Author Liu, Z.; Li, C.; Tan, K.; Li, Y.; Tan, W.; Li, X.; Zhang, C.; Meng, S.; Liu, L. url  openurl
  Title Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data Type Journal Article
  Year 2023 Publication (down) Science of The Total Environment Abbreviated Journal  
  Volume 865 Issue Pages 161033  
  Keywords Acid in situ leaching, Geochemical and isotopic tracing, Groundwater contamination, Natural attenuation, Uranium post-mining  
  Abstract Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42−, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from −0.07 ‰ to 0.09 ‰ in the post-mining site and from −1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994–0.9997 for uranium and 1.0032–1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ liu_study_2023 Serial 155  
Permanent link to this record
 

 
Author Tisherman, R.A.; Rossi, R.J.; Shonkoff, S.B.C.; DiGiulio, D.C. url  openurl
  Title Groundwater uranium contamination from produced water disposal to unlined ponds in the San Joaquin Valley Type Journal Article
  Year 2023 Publication (down) Science of The Total Environment Abbreviated Journal  
  Volume 904 Issue Pages 166937  
  Keywords Groundwater, Oil & gas, Produced water, San Joaquin Valley, Uranium  
  Abstract In the southern San Joaquin Valley (SJV) of California, an agriculturally productive region that relies on groundwater for irrigation and domestic water supply, the infiltration of produced water from oil reservoirs is known to impact groundwater due to percolation from unlined disposal ponds. However, previously documented impacts almost exclusively focus on salinity, while contaminant loadings commonly associated with produced water (e.g., radionuclides) are poorly constrained. For example, the infiltration of bicarbonate-rich produced waters can react with sediment-bound uranium (U), leading to U mobilization and subsequent transport to nearby groundwater. Specifically, produced water infiltration poses a particular concern for SJV groundwater, as valley-fill sediments are well documented to be enriched in geogenic, reduced U. Here, we analyzed monitoring well data from two SJV produced water pond facilities to characterize U mobilization and subsequent groundwater contamination. Groundwater wells installed within 2 km of the facilities contained produced water and elevated levels of uranium. There are \textgreater400 produced water disposal pond facilities in the southern SJV. If our observations occur at even a fraction of these facilities, there is the potential for widespread U contamination in the groundwaters of one of the most productive agricultural regions in the world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number THL @ christoph.kuells @ tisherman_groundwater_2023 Serial 159  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: