|   | 
Details
   web
Records
Author Tariq, A.; Beni, L.H.; Ali, S.; Adnan, S.; Hatamleh, W.A.
Title An effective geospatial-based flash flood susceptibility assessment with hydrogeomorphic responses on groundwater recharge Type Journal Article
Year 2023 Publication (down) Groundwater for Sustainable Development Abbreviated Journal
Volume 23 Issue Pages 100998
Keywords Flood hydrology, AHP, Flood susceptibility, FR, Unit stream power, GIS
Abstract Floods are one of the most common natural disasters, resulting in the extensive destruction of infrastructure, property, and human life. The destructive potential of a flood depends on numerous factors, including the size of the flood, the rate of flooding, the time it takes for the water to move through a given area, the river’s planform and cross-section geometry, and other similar factors. The present study is a unique analysis of flood mapping that was accomplished with the help of the Analytical Hierarchy Process (AHP), Frequency Ratio (FR), and hydrogeomorphic response to floods by integrating geospatial analysis and unit stream power modeling. The Indus catchment region of Pakistan is where the subject topic is put into practice. According to the hydrologic analysis of the yearly peak discharge, the hydro-station in Gilgit-Baltistan can move boulders measuring up to 0.5 m in height during significant flooding. On the other hand, there will be no change to the geometry of the cross-section throughout 1980–2020 in Gilgit-Baltistan. The flood susceptibility map is constructed using data from twelve influencing parameters, including elevation, proximity to the drainage network, slope, drainage density, geomorphology, rainfall, the curvature of the topography, flow accumulation, geology, land use, Topographic Wetness Index (TWI), and Stream Power Index (SPI). The area under the curve (AUC) approach, which demonstrates a substantial degree of accuracy (85% and 83%), is utilized to evaluate the effectiveness of the AHP and FR. The current study fills the gaps between the geospatial approach and the hydrogeomorphic assessment of flood to determine flood susceptibility.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Tariq2023100998 Serial 234
Permanent link to this record
 

 
Author Kharazi, P.; khazaeli, E.A.; Heshmatpour, A.
Title Delineation of suitable sites for groundwater dams in the semi-arid environment in the northeast of Iran using GIS-based decision-making method Type Journal Article
Year 2021 Publication (down) Groundwater for Sustainable Development Abbreviated Journal
Volume 15 Issue Pages 100657
Keywords Subsurface dam, Hybrid decision-making method, Geographic information system, Analytical hierarchy process, EDAS, TOPSIS1
Abstract Competing commercial demands on water resources need to be balanced as the world’s population rises. Generally, groundwater is raised by subsurface dams. In this paper, the geographic information system (GIS) software and a decision-making method were applied. As the first step, the limitations that affect the establishment of the subsurface dam were identified using eliminating criteria by the Boolean logic. Regarding the second step, the most appropriate axis was determined for subsurface dam construction in each of the limits. The analytical hierarchy process (AHP) was applied according to the evaluation criteria in this study. The aim of using AHP was to weigh and prioritize the criteria of the groundwater dam for recognizing appropriate sites. Among various places and regarding the subsurface dam construction, AHP was conducted using a hierarchy process for finding the most suitable sites in the third stage of the decision-making method. Finally, among the ten appropriate sites, cross comparison was drawn by using Decision Expert (DEX), Evaluation based on Distance from Average Solution (EDAS), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). Compared together (as a process of decision-making), DEX, TOPSIS, and EDAS methods assisted in ranking the most appropriate sites in the final step of subsurface dam pre-selection. A and C axes obtained scores between 1 and 2, among 10 axes according to the numerically ranked locations. Regarding the water shortage issue and better management of the underground water at certain levels, the findings of this study could be useful for the residents of Kajbid-Balaqly Watershed in the dry season. Further, water managers can use the above-mentioned methods for their decisions regarding the proper subsurface dam establishment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Kharazi2021100657 Serial 250
Permanent link to this record
 

 
Author Sardo, M.S.; Jalalkamali, N.
Title A system dynamic approach for reservoir impact assessment on groundwater aquifer considering climate change scenario Type Journal Article
Year 2022 Publication (down) Groundwater for Sustainable Development Abbreviated Journal
Volume 17 Issue Pages 100754
Keywords System dynamics, Water resources management, Vensim, Management scenarios
Abstract With its arid and semi-arid climate, Iran claims about one-third of the world’s average annual precipitation. Accordingly, the present study investigated whether an effective water resources management (WRM) strategy (both groundwater and reservoir resources) could reduce groundwater drawdown while simultaneously providing secure enough water for preservation of agricultural activities and rural settlements. For this purpose, a comprehensive system dynamics (SD) model incorporating reservoir, surface-water, and groundwater resources was developed. Then, the model was implemented for the Nesa plain in Bam County, Iran, as an example. In this plain, the construction of a dam to supply drinking water to the cities of Bam and the Bam Industrial Zone had devastated the environment and human communities in the downstream areas, leading to the depopulation of as many as 104 villages in the Bam region. The results of the SD model revealed that the artificial recharge of the plain groundwater aquifer along with the management of the operation of the wells and increasing productivity would be very effective. In order to estimate future precipitation data, the SDSM statistical exponential microscale model was used to microscale the large CanESM2 scale model under two scenarios of RCP4.5 and RCP8.5. The continuation of the current trend of the groundwater resources in the plain during the next 20 years will also cause a drop in water level of 8.3 m compared with the existing situation and a reduction of 41 m compared with the long-term average of 1980. Based on this modeling effort, upon releasing 60% of river flow, surplus to downstream demand, for recharging aquifer through artificial recharge projects, the rate of water table fall will decline significantly over a 20-year period and the amount of negative aquifer water balance would most likely improve from 65.5 to 35.17 million cubic meters annually.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Shahrokhisardo2022100754 Serial 266
Permanent link to this record
 

 
Author Abadi, B.; Sadeghfam, S.; Ehsanitabar, A.; Nadiri, A.A.
Title Investigating socio-economic and hydrological sustainability of ancient Qanat water systems in arid regions of central Iran Type Journal Article
Year 2023 Publication (down) Groundwater for Sustainable Development Abbreviated Journal
Volume 23 Issue Pages 100988
Keywords Ancient irrigation, QWSs, GIS, Indigenous knowledge, Maintenance, Distribution
Abstract The Qanat water systems (QWSs), the ancient water engineering systems in Iran belonging to the very distant past, have harvested groundwater from drainages to convey it toward the surface with no use of energy. The present article highlights the socio-economic aspects of the sustainability of the QWSs and gives a satisfactory explanation of why the QWSs should be restored. In doing so, we subscribe to the view that indigenous and scientific knowledge should be incorporated. The former serves to tackle the restoration of the QWSs, the latter contributes to the distribution of water into the farmlands as efficiently as possible. Measured by (a) resilience, (b) reliability, (c) vulnerability, and (d) sustainability, the GIS technique made clear the performance of the QWSs has, therefore, the worst condition observed in terms of resiliency; the best condition observed concerning the vulnerability. Moreover, the QWSs have intermediate performance in terms of reliability. Finally, the sustainability index (SI) classifies the QWSs into different bands, which provide explicit support to take priority of the selection of the QWSs for restoration. In conclusion, a theoretical framework has been drawn to keep the QWSs sustainable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-801x ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Abadi2023100988 Serial 268
Permanent link to this record
 

 
Author Puri, S.
Title Chapter 9 – Transboundary aquifers: a shared subsurface asset, in urgent need of sound governance Type Book Chapter
Year 2021 Publication (down) Global Groundwater Abbreviated Journal
Volume Issue Pages 113-128
Keywords ILC Draft Articles, impact on GDP, sound governance, Transboundary aquifers
Abstract Apart from some notable exceptions, the sound governance of transboundary aquifers (coupled or uncoupled to rivers) is seriously lacking in most regions of the world, despite a highly successful 20-year ISARM initiative. The distinction between regions of water abundance (as in the Haute Savoie–Geneva aquifers) and those of water scarcity (\textless1000 m3/an/capita), as in the Rum-Saq aquifer, ought to be a driver for the urgency in adopting sound governance. In the latter regions, however, such an urgent response faces too many hurdles (institutional, financial, and weak capacity). Climate change, one of the global megatrends (among demography, economic shift, resources stress, urbanization, and novel viruses such as COVID-19), will exacerbate the problem in the coming decade and beyond. This chapter provides an critical perspective on the status of this subsurface asset in 570 or so, domestic and transboundary aquifers of the world (self-identified by country experts), while taking full account of their interconnections, or not, with surface waters. This critical perspective will be grounded in two important factors, first the hiatus in adoption by countries of the evolving international water law and guidance on transboundary aquifers (the Draft Articles, which provide legal pathways for collaboration or eventually dispute resolution), and second the framework of the sustainable development goals (SDG) 6 (clean water and sanitation), which countries have committed themselves to with reference to transboundary waters. The critical perspective finds that despite the lack of momentum in adopting formal global norms, sporadic cooperation and collaboration is continuing and is well received, when delivered methodically through the support of international agencies. The findings of the critical perspective are that even if water-related SDGs will have been achieved across the world, it would contribute precious little to meaningful enhancement of governance of transboundary aquifers, unless they have been explicitly addressed in terms that are tangible to decision makers, such as the impact of disregarding them on the current or future national GDP. The onset of a “new socioeconomic normal” in the aftermath of COVID-19 could further defer meaningful progress, taking the example of Latin America, where a 5% decline has been forecast for 2020. With such declines in the finances of governments, attention to shared aquifer resources may well decline even further. Urgent wise reaction to this possibility must be a priority for the professional science-policy community.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor Mukherjee, A.; Scanlon, B.R.; Aureli, A.; Langan, S.; Guo, H.; McKenzie, A.A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-12-818172-0 Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ mukherjee_chapter_2021 Serial 106
Permanent link to this record
 

 
Author Lawrinenko, M.; Kurwadkar, S.; Wilkin, R.T.
Title Long-term performance evaluation of zero-valent iron amended permeable reactive barriers for groundwater remediation – A mechanistic approach Type Journal Article
Year 2023 Publication (down) Geoscience Frontiers Abbreviated Journal
Volume 14 Issue 2 Pages 101494
Keywords Geochemistry, Iron, Permeable reactive barrier, Plating reactions, Reduction potential, Surface passivation
Abstract Permeable reactive barriers (PRBs) are used for groundwater remediation at contaminated sites worldwide. This technology has been efficient at appropriate sites for treating organic and inorganic contaminants using zero-valent iron (ZVI) as a reductant and as a reactive material. Continued development of the technology over the years suggests that a robust understanding of PRB performance and the mechanisms involved is still lacking. Conflicting information in the scientific literature downplays the critical role of ZVI corrosion in the remediation of various organic and inorganic pollutants. Additionally, there is a lack of information on how different mechanisms act in tandem to affect ZVI-groundwater systems through time. In this review paper, we describe the underlying mechanisms of PRB performance and remove isolated misconceptions. We discuss the primary mechanisms of ZVI transformation and aging in PRBs and the role of iron corrosion products. We review numerous sites to reinforce our understanding of the interactions between groundwater contaminants and ZVI and the authigenic minerals that form within PRBs. Our findings show that ZVI corrosion products and mineral precipitates play critical roles in the long-term performance of PRBs by influencing the reactivity of ZVI. Pore occlusion by mineral precipitates occurs at the influent side of PRBs and is enhanced by dissolved oxygen and groundwater rich in dissolved solids and high alkalinity, which negatively impacts hydraulic conductivity, allowing contaminants to potentially bypass the treatment zone. Further development of site characterization tools and models is needed to support effective PRB designs for groundwater remediation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-9871 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ lawrinenko_long-term_2023 Serial 143
Permanent link to this record
 

 
Author Khaneiki, M.L.; Al-Ghafri, A.S.; Klöve, B.; Haghighi, A.T.
Title Sustainability and virtual water: The lessons of history Type Journal Article
Year 2022 Publication (down) Geography and Sustainability Abbreviated Journal
Volume 3 Issue 4 Pages 358-365
Keywords Proto-industrialization, Water scarcity, Non-hydraulic polity, Virtual water, Political economy
Abstract This article aims to show that virtual water has historically been an adaptation strategy that enabled some arid regions to develop a prosperous economy without putting pressure on their scarce water resources. Virtual water is referred to as the total amount of water that is consumed to produce goods and services. As an example, in arid central Iran, the deficiency in agricultural revenues was offset by more investment in local industries that enjoyed a perennial capacity to employ more workers. The revenues of local industries weaned the population from irrigated agriculture, since most of their raw materials and also food stuff were imported from other regions, bringing a remarkable amount of virtual water. This virtual water not only sustained the region’s inhabitants, but also set the stage for a powerful polity in the face of a rapid population growth between the 13th and 15th centuries AD. The resultant surplus products entailed a vast and safe network of roads, provided by both entrepreneurs and government. Therefore, it became possible to import more feedstock such as cocoons from water-abundant regions and then export silk textiles with considerable value-added. This article concludes that a similar model of virtual water can remedy the ongoing water crisis in central Iran, where groundwater reserves are overexploited, and many rural and urban centers are teetering on the edge of socio-ecological collapse. History holds an urgent lesson on sustainability for our today’s policy that stubbornly peruses agriculture and other high-water-demand sectors in an arid region whose development has always been dependent on virtual water.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2666-6839 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Khaneiki2022358 Serial 272
Permanent link to this record
 

 
Author Lightfoot, D.R.
Title Moroccan khettara: Traditional irrigation and progressive desiccation Type Journal Article
Year 1996 Publication (down) Geoforum Abbreviated Journal
Volume 27 Issue 2 Pages 261-273
Keywords
Abstract A 300 km network of khettara (qanat) subsurface irrigation channels was excavated in the Tafilalt basin beginning in the late 14th century. More than 75 of these chains provided perennial water following the breakup of the ancient city of Sijilmassa. Khettara continued to function for much of the northern oasis until the early 1970s, when new technologies and government policies forced changes. Data on origins, maintenance, and current use were collected from archival sources, aerial photographs, Landsat imagery, and from interviews. Insufficient water resources and unsustainable practices have dramatically lowered the water table, drying up khettara. This has resulted in a loss of local control over water resources, abandonment of a sustainable irrigation system, and progressive desiccation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-7185 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ Lightfoot1996261 Serial 257
Permanent link to this record
 

 
Author Strandmann, P.A.E.P. von; Reynolds, B.C.; Porcelli, D.; James, R.H.; Calsteren, P. van; Baskaran, M.; Burton, K.W.
Title Assessing continental weathering rates and actinide transport in the Great Artesian Basin Type Journal Article
Year 2006 Publication (down) Geochimica et Cosmochimica Acta Abbreviated Journal
Volume 70 Issue 18, Supplement Pages 497
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-7037 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ strandmann_assessing_2006 Serial 116
Permanent link to this record
 

 
Author Bonnetti, C.; Zhou, L.; Riegler, T.; Brugger, J.; Fairclough, M.
Title Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle Type Journal Article
Year 2020 Publication (down) Geochimica et Cosmochimica Acta Abbreviated Journal
Volume 282 Issue Pages 113-132
Keywords Activity cycle, Pyrite composition, Roll front uranium deposits, S isotope and trace element fractionation
Abstract Complex pyrite textures associated with large changes in isotopic and trace element compositions are routinely assumed to be indicative of multi-faceted processes involving multiple fluid and sulfur sources. We propose that the features of ore-stage pyrite from roll front deposits across the world, revealed in exquisite detail via high-resolution trace element mapping by LA-ICP-MS, reflect the dynamic internal evolution of the biogeochemical processes responsible for sulfate reduction, rather than externally driven changes in fluid or sulfur sources through time. Upon percolation of oxidizing fluids into the reduced host-sandstones, roll front systems become self-organized, with a systematic reset of their activity cycle after each translation stage of the redox interface down dip of the aquifer. Dominantly reducing conditions at the redox interface favor the formation of biogenic framboidal pyrite (δ34S from −30.5 to −12.5‰) by bacterial sulfate reduction and the genesis of the U mineralization. As the oxidation front advances, oxidation of reduced sulfur minerals induces an increased supply of sulfate and metals in solution to the bacterial sulfate reduction zone that has similarly advanced down the flow gradient. Hence, this stage is marked by increased rates of the bacterial sulfate reduction associated with the crystallization of variably As-Co-Ni-Mo-enriched concentric pyrite (up to 10,000′s of ppm total trace contents) with moderately negative δ34S values (from −13.7 to −7.5‰). A final stage of pyrite cement with low trace element contents and heavier δ34S signature (from −6.9 to +18.8‰) marks the end of the roll front activity cycle and the transition from an open to a predominantly closed system behavior (negligible advection of fresh sulfate). Blocky pyrite cement is formed using the remaining sulfate, which now becomes quickly heavy according to a Rayleigh isotope fractionation process. This ends the cycle by depleting the nutrient supplies for the sulfate-reducing bacteria and cementing pore spaces within the host sandstone, effectively restricting fluid infiltration. This internally-driven roll front activity cycle results in systematic, large S isotope and trace element fractionation. Ultimately, the long-time evolution of the basin and fluid sources control the metal endowment and evolution of the system; these events, however, are unlikely to be preserved by the roll front, as a direct result of its hydrodynamic nature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-7037 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number THL @ christoph.kuells @ bonnetti_large_2020 Serial 185
Permanent link to this record